首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
The complex C5H5(PMe3)Co(μ-CS)2CoC5H5 (I) is formed by the reaction of C5H5Co(PMe3)CS and CH2I2. The X-ray structure analysis shows an unsymmetrical non-planar Co2C2-skeleton with different Co---C bond lengths. The Co---Co distance is 239.2 pm. Compound I thus represents a new example of binuclear (18 + 16)-electron complexes in which the more electron-rich metal atom forms a donor bond to the more electron-poor counterpart. The reaction of I with ligands such as P(NMe2)3 does not lead to bridge cleavage indicating the stability of the Co(CS)2Co-framework.  相似文献   

2.
LnCl3 (Ln=Nd, Gd) reacts with C5H9C5H4Na (or K2C8H8) in THF (C5H9C5H4 = cyclopentylcyclopentadienyl) in the ratio of 1 : to give (C5H9C5H4)LnCl2(THF)n (orC8H8)LnCl2(THF)n], which further reacts with K2C8H8 (or C5H9C5H4Na) in THF to form the litle complexes. If Ln=Nd the complex (C8H8)Nd(C5H9C5H4)(THF)2 (a) was obtained: when Ln=Gd the 1 : 1 complex [(C8H8)Gd(C%H9)(THF)][(C8H8)Gd(C5H9H4)(THF)2] (b) was obtained in crystalline form.

The crystal structure analysis shows that in (C8H8)Ln(C5H9C5H4)(THF)2 (Ln=Nd or Gd), the Cyclopentylcyclopentadieny (η5), cyclooctatetraenyl (η8) and two oxygen atoms from THF are coordinated to Nd3+ (or Gd3+) with coordination number 10.

The centroid of the cyclopentadienyl ring (Cp′) in C5H9C5H4 group, cyclooctatetraenyl centroid (COTL) and two oxygens (THF) form a twisted tetrahedron around Nd3+ (or Gd3+). In (C8H8)Gd(C5H9C5H4)(THF), the cyclopentyl-cyclopentadienyl (η5), cyclooctatetraenyl (η8) and one oxygen atom are coordinated to Gd3+ with the coordination number of 9 and Cp′, COT and oxygen atom form a triangular plane around Gd3+, which is almost in the plane (dev. -0.0144 Å).  相似文献   


3.
Reaction of YbI2 with two equivalents of cyclopentylindenyl lithium (C5H9C9H6Li) affords ytterbium(II) substituted indenyl complex (C5H9C9H6)2Yb(THF)2 (1) which shows high activity to ring-opening polymerization (ROP) of lactones. The reaction between YbI2 and cyclopentylcyclopentadienyl sodium (C5H9C5H4Na) gives complex [(C5H9C5H4)2Yb(THF)]2O2 (2) in the presence of a trace amount of O2, the molecular structure of which comprises two (C5H9C5H4)2Yb(THF) bridged by an asymmetric O2 unit. The O2 unit and ytterbium atoms define a plane that contains a Ci symmetry center.  相似文献   

4.
Reduction of (C5H5)2TiCl2 with Zn in presence of benzyl cyanide gives the (μ-alkyl-ideneamido)titanocene complex [(C5H5)2TiCl]2[μ-{N=C(CH2C6H5)---C(CH2C6H5)=N}] with C---C bond formation between two benzyl cyanide molecules.

X-ray structure investigation indicates a symmetrical structure. The C=N distances are smaller than usual, the Ti---N distances are very short, and the Ti---N---C angle differs only a little from 180°, which infers a heteroallene structure of the complex.  相似文献   


5.
The dimethylphosphino substituted cyclopentadienyl precursor compounds [M(C5Me4CH2PMe2)], where M=Li+ (1), Na+ (2), or K+ (3), and [Li(C5H4CR′2PMe2)], where R′2=Me2 (4), or (CH2)5 (5), [HC5Me4CH2PMe2H]X, where X=Cl (6) or PF6 (7) and [HC5Me4CH2PMe2] (8), are described. They have been used to prepare new metallocene compounds, of which representative examples are [Fe(η-C5R4CR′2PMe2)2], where R=Me, R′=H (9); R=H and R′2=Me2 (10), or (CH2)5 (11), [Fe(η-C5H4CMe2PMe3)2]I2 (12), [Fe{η-C5Me4CH2P(O)Me2}2] (13), [Zr(η-C5R4CR′2PMe2)2Cl2], where R=H, R′=Me (14), or R=Me, R′=H (15), [Hf(η-C5H4CMe2PMe2)2]Cl2] (16), [Zr(η-C5H4CMe2PMe2)2Me2] (17), {[Zr(η-C5Me4CH2PMe2)2]Cl}{(C6F5)3BClB(C6F5)3} (18), [Zr{(η-C5Me4CH2PMe2)2Cl2}PtI2] (19), [Mn(η-C5Me4CH2PMe2)2] (20), [Mn{(η-C5Me4CH2PMe2B(C6F5)3}2] (21), [Pb(η-C5H4CMe2PMe2)2] (23), [Sn(η-C5H4CMe2PMe2)2] (24), [Pb{η-C5H4CMe2PMe2B(C6F5)3}2] (25), [Pb(η-C5H4CMe2PMe2)2PtI2] (26), [Rh(η-C5Me4CH2PMe2)(C2H4)] 29, [M(η,κP-C5Me4CH2PMe2)I2], where M=Rh (30), or Ir, (31).  相似文献   

6.
The structure of the (C18H8Se3O2)2(C6H5CN) molecular complex isolated from the TSeT + HgI2 reaction in benzonitrile has been determined. The -Se-Se-Se- fragment has been found to have Se---Se bond lengths equal to 2.348(3) and 2.350(4) Å.  相似文献   

7.
The reaction of LnCl_3 with K _9H_7(C_9H_7=indenyl)andK_2C_8H_8(C_8H_8=cyclooctatetraene)in tetrahydrofuran(THF)give thecorresponding complexes(η~5-C_9H_7)Ln(η~8-C_8H_8)·2THF.The synthesis of(η~5-C_9H_7)Ln(η~8-C_8H_8)·2THF(Ln=Pr,Nd)and crystal structure of(η~5-C_9H_7)Pr(η~8-C_8H_8)·2THF are described.  相似文献   

8.
Treatment of 1,2-trans-C5H8(PCl2)2 with 1,2-C2H4(NHPr-i)2 gave the C2-symmetric perhydro-1,6,2,5-diazaphosphocine C5H8{P(Cl)N(Pr-i)CH2}2-cyclo, which produced dissymmetric C5H8(PPh2){P[N(Pr-i)CH2]2-cyclo} on further reaction with PhMgBr. Cleavage of the P---N bonds with gaseous HCl afforded C5H8(PPh2)(PCl2), which was converted to C5H8(PPh2){P(OPh)2}2 by reaction with phenol. All chiral P,P derivatives were obtained as racemates as well as resolved (1R,2R)- and (1S,2S)-enantiomers.  相似文献   

9.
Thermal displacement of coordinated nitriles RCN (R = CH3, C2H5 or n-C3H7) in [C5H5Fe(L2)(NCR)]X complexes (L2 = P(OCH3)3)2, (P(OC6H5)3)2 or (C6H5)2PC2H4P(C6H5)2 (DPPE)) by E(CH3)2 affords high yields of [C5H5Fe(L2)(E(CH3)2)]X compounds (E = S, Se and Te; X = BF4 or PF6). Spectroscopic data and ligand displacement reactions are presented and discussed together with related observations on [C5H5Fe(CO)2(E(CH3)2)]BF4 compounds. The molecular structure of [C5H5Fe(P(OCH3)3)2(S(CH3)2)]PF6 was determined by a single-crystal X-ray diffraction study: monoclinic, space group P21/n-C52h (No. 14) with a = 8.4064(12), b = 11.183(2), c = 50.726(8) Å, β = 90.672(13)° and Z = 8 molecules per unit cell. The coordination sphere of the iron atom is pseudo-tetrahedral with an Fe---S bond distance of 2.238 Å.  相似文献   

10.
The complex (di-η5-C5H4CH2CH2CH2C5H4)Ti(η1-C5H5)2 (I) can be obtained unambiguously starting from the corresponding bridged titanocene dichloride. Attempts to synthesize the isomeric compounds (η5-C5H5)2 Ti(di-η1-C5H4-CH2CH2CH2C5H4) (I′) by the action of a convenient bridged dianion on (C5H5)2 TiCl2 afford several compounds, one of them is the complex I. The possibility of interconversion of these complexes by a fluctional process is discussed.  相似文献   

11.
On the basis of ab initio MP2/6–31 + + G(2d,2p) calculations, we examined the potential energy surfaces of the water·hydrocarbon complexes H2O·CH4, H2O·C2H2 and H2O·C2H2 to locate all the minimum energy structures and estimate the hydrogen bond energies and vibrational frequencies associated with the C(spn)---H·O and the O---H·C(spn) bonds (n = 1−3). Our calculations show that H2O·C2H2, H2O·C2H4 and H2O·CH4 have two minimum energy structures (i.e., the C---H·O and O---H·C hydrogen bond forms), but H2O·C2H4 has only one when the vibrational motion is taken into account, the O---H·C hydrogen bond form. We have also computed the barrier for the interconversion from one minimum to the other. The fully optimized geometries of H2O·CH4, H2O·C2H4 and H2O·C2H2 as well as the vibrational shifts of the C---H stretching frequencies in their C---H·O hydrogen-bonded forms are in good agreement with the available experimental data. The calculated hydrogen bond energies show that the C(spn---H·O bond strengths decrease in the order C(sp)---H·O>C(sp2)---H·O>C(sp3)---O>C(sp3---H·O, which is also consistent with the available experimental data.  相似文献   

12.
The ruthenium(II) complex Ru(CO)2(NH2(NH2CH2C6H5)2(Si(C6H5)(CH3)2)I has been prepared by the reaction of Ru(CO)4(Si(C6H5)(CH3)2)I with benzylamine. Two-dimensional homonuclear 1H NMR experiments examine the scalar coupling of the enantiotopic amino and methylene protons of the benzylamine ligand. X-ray analysis of Ru(CO)2(NH2CH2C6H5)2(Si(C6H5)(CH3)2)I·1/3C5H12 (triclinic; P ; a = 14.266(4), b = 15.748(5), c = 20.082(6) Å; = 94.38(3), β = 96.30(2), γ = 101.52(2)°) indicates three crystallographically unique complexes form a clathrate with a pentane guest.  相似文献   

13.
The complex [MoW(μ-CC6H4Me-4)(CO)27-C7H7)(η5-C2B9H10Me)] reacts with diazomethane in Et2O containing EtOH to afford the dimetal compound [MoW(OEt)(μ-CH2){μ-C(C6H4Me-4)C(Me)O}(η7-C7H7)(η5-C2B9H10Me)]. The structure of this product was established by X-ray diffraction. The Mo---W bond [2.778(4) Å] is bridged by a CH2 group [μ-C---Mo 2.14(3), μ-C---W 2.02(3) Å] and by a C(C6H4Me-4)C(Me)O fragment [Mo---O 2.11(3), W---O 2.18(2), Mo---C(C6H4Me-4) 2.41(3), W---C(C6H4Me-4) 2.09(3), Mo---C(Me) 2.26(3) Å]. The molybdenum atom is η7-coordinated by the C7H7 ring and the tungsten atom is η5-coordinated by the open pentagonal face of the nido-icosahedral C2B9H10Me cage. The tungsten atom also carries a terminally bound OEt group [W---O 1.88(3) Å]. The 1H and 13C-{1H} NMR data for the dimetal compound are reported and discussed.  相似文献   

14.
Using velocity map ion imaging technique, the photodissociation of n-C4H9Br in the wavelength range 231–267 nm was studied. The results and our ab initio calculations indicated that the absorption of n-C4H9Br in the investigated region originated from the excitations to the lowest three repulsive states, as assigned as 1A″, 2A′ and 3A′ in Cs symmetry. Dissociations occurred on the PES surfaces of the three states, terminating in C4H9+Br (2P3/2) or C4H9 + Br* (2P1/2) as two channels, and being impacted by an avoided crossing between the PES surfaces of the 2A′ and 3A′ states. The transition dipole to the 1A″ state was perpendicular to the symmetry plane, so perpendicular to the C–Br bond. The transitions to the 3A′ state was polarized parallel to the symmetry plane, and also parallel to the C–Br bond. While the transition dipole to the 2A′ state was in the symmetry plane, but formed an angle of about 53.1° with the C–Br bond. We have also determined the avoided crossing probabilities, which affected the relative fractions of the individual pathways, for the photolysis of n-C4H9Br near 234 nm and 267 nm.  相似文献   

15.
The reaction of [(C6H6)RuCl2]2 with 7,8-benzoquinoline and 8-hydroxyquinoline in methanol were performed. The obtained complexes have been studied by IR, UV–VIS, 1H and 13C NMR spectroscopy and X-ray crystallography. In the reaction with 8-hydroxyquinoline the arene ruthenium(II) complex oxidized to Ru(III). The electronic spectra of the obtained compounds have been calculated using the TDDFT method. Magnetic properties of [Ru(C9H6NO)3] · CH3OH complex suggest the antiferromagnetic coupling of the ruthenium centers in the crystal lattice. EPR spectrum of [Ru(C9H6NO)3] · CH3OH compound indicates single isotropic line only characteristic for Ru3+ with spin equal to 1/2.  相似文献   

16.
Reaction of ansa-cyclopentadienyl pyrrolyl ligand (C5H5)CH2(2-C4H3NH) (2) with Ti(NMe2)4 affords bis(dimethylamido)titanium complex [(η5-C5H4)CH2(2-C4H3N)]Ti(NMe2)2 (3) via amine elimination. A cyclopentadiene ligand with two pendant pyrrolyl arms, a mixture of 1,3- and 1,4-{CH2(2-C4H3NH)}2C5H4 (4), undergoes an analogous reaction with Ti(NMe2)4 to give [1,3-{CH2(2-C4H3N)}25-C5H3)]Ti(NMe2) (5). Molecular structures of 3 and 5 have been determined by single crystal X-ray diffraction studies.  相似文献   

17.
The details of weak C–Hπ interactions that control several inter and intramolecular structures have been studied experimentally and theoretically for the 1:1 C2H2–CHCl3 adduct. The adduct was generated by depositing acetylene and chloroform in an argon matrix and a 1:1 complex of these species was identified using infrared spectroscopy. Formation of the adduct was evidenced by shifts in the vibrational frequencies compared to C2H2 and CHCl3 species. The molecular structure, vibrational frequencies and stabilization energies of the complex were predicted at the MP2/6-311+G(d,p) and B3LYP/6-311+G(d,p) levels. Both the computational and experimental data indicate that the C2H2–CHCl3 complex has a weak hydrogen bond involving a C–Hπ interaction, where the C2H2 acts as a proton acceptor and the CHCl3 as the proton donor. In addition, there also appears to be a secondary interaction between one of the chlorine atoms of CHCl3 and a hydrogen in C2H2. The combination of the C–Hπ interaction and the secondary ClH interaction determines the structure and the energetics of the C2H2–CHCl3 complex. In addition to the vibrational assignments for the C2H2–CHCl3 complex we have also observed and assigned features owing to the proton accepting C2H2 submolecule in the acetylene dimer.  相似文献   

18.
The compounds C5H5Co(η2-CH3CHS)PMe3 (I) and C5H5Co(η2-CH3CHSe)PMe3 (II) are prepared from C5H5Co(CO)PMe3, CH3CHBr2 and NaSH or NaSeH, respectively. The synthesis of the corresponding rhodium complexes C5H5Rh(η2-CH3CHS)P(i-Pr)3 (VI) and C5H5Rh(η2-CH3CHSe)P(i-Pr)3 (VII) has been achieved through hydrogenation of C5H5Rh(η2-EC=CH2)P(i-Pr)3 (E = S, Se), using RhCl(PPh3)3 as a catalyst. The crystal structure of VII has been determined.  相似文献   

19.
Reaction of Me3SiMe2SiC5H5 (4), prepared from Me3SiMe2SiCl and C5H5Na, with Fe(CO)5 in refluxing xylene afforded the title compound (3). The silicon-silicon bond in 3 is exceptionally stable in refluxing xylene and also in succeeding reactions to prepare a series of its derivatives. Thus, 3 reacted with I2 in either chloroform or benzene, giving [η5-Me3SiMe2SiC5H4Fe(CO)2I] (6). Compound 3 was reduced by sodium amalgam and reacted subsequently with CH3I, PhCH2Cl, CH3COCl, PhCOCl, Cy3SnCl (Cy = cyclohexyl) and Ph3SnCl, producing [η5-Me3SiMe2SiC5H4Fe(CO)2R][7 : R = CH3 (a), PhCH2 (b), CH3CO (c), PhCO (d), Cy3Sn (e) and Ph3Sn (f), respectively]. The molecular structure of 3 has been determined by X-ray diffraction crystallography. It was found that 3 has a trans-configuration with a symmetrical centre located at the middle of the Fe---Fe bond. It is abnormal that the conformation of the disilane part around the Si---Si bond is almost eclipsed rather than staggered.  相似文献   

20.
The synthesis of the potential bridging ligand (C6H5)2PCH2CH2Si(CH3)2C5H4 (3) is described. The ferrocene (6 derived from 3 has been found to form macrocyclic complexes with metal fragments NiCl2, NiBr2, and Co2(CO)6. Although monomeric, bimetallic products might have been expected based upon the reduced steric demands of ligand 3 relative to an analogous ligand, (C6H5)2PCH2Si(CH)3)2C5H4 (1), it appears that the increased flexibility in 3 is the overriding factor leading to a preference for inter- rather than intramolecular coordination of the second phosphine function in 6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号