首页 | 官方网站   微博 | 高级检索  
     

化学氧化强化湿法冶金清洁生产:进展与展望
引用本文:孙思涵,潘福生,谢勇冰,曹宏斌,张懿.化学氧化强化湿法冶金清洁生产:进展与展望[J].过程工程学报,2022,22(2):145-161.
作者姓名:孙思涵  潘福生  谢勇冰  曹宏斌  张懿
作者单位:1. 天津大学化工学院绿色化学化工教育部重点实验室,天津 300072 2. 中国科学院绿色过程制造创新研究院,中国科学院过程工程研究所,北京市过程污染控制工程技术研究中心,北京 100190 3. 中国科学院过程工程研究所湿法冶金清洁生产技术国家工程实验室,北京 100190 4. 天津化学化工协同创新中心,天津 300072
摘    要:湿法冶金具有能耗低、污染小等优点,广泛应用于低品位复杂矿石处理。金属浸出是湿法冶金的首要环节,但存在金属回收率低和反应时间长等问题。化学氧化可加速金属硫化物转化为金属离子或改变金属的价态,有利于后续目标金属的分离富集,在此过程中还可以通过介质强化、外场强化提高金属氧化浸出率。主要介绍了五种典型的低腐蚀性化学氧化剂(Fe3+, O2, H2O2, O3和过硫酸盐),以及相关的协同氧化方法在金属浸出中的应用和机理分析,介绍了加压强化、介质强化、微波和超声等强化方法,对比分析了各方法的优缺点及适用范围。Fe3+广泛应用于硫化矿的酸性浸出,独特的离子对循环使Fe3+可与多种氧化剂形成协同氧化浸出机制。O2常通过加压强化提升氧化浸出效率,可促进难处理硫化矿氧化分解。H2O2氧化性强,氧化产物清洁无污染,受到广泛关注,近年来多用于电子废弃物资源处理领域。臭氧预氧化处理含硫含砷难处理金精矿,可有效解除难浸硫化矿对金的包裹,促进金的溶出。过硫酸盐性质稳定,氧化能力强,可活化生成更高氧化性的活性氧。协同氧化可结合各氧化剂的优点,提高氧化能力,降低综合成本。四种强化方法可为化学氧化过程提供能量、加强传质或提高金属分离选择性,有助于提高金属浸出率,缩短反应时间。展望了化学氧化强化金属浸出技术的发展前景和技术挑战,对湿法冶金清洁生产技术开发有指导意义。

关 键 词:湿法冶金  化学氧化浸出  难处理矿石  金属回收  过程强化  
收稿时间:2021-03-01

Chemical oxidation strengthening cleaner production of hydrometallurgy:progress and prospect
Sihan SUN,Fusheng PAN,Yongbing XIE,Hongbin CAO,Yi ZHANG.Chemical oxidation strengthening cleaner production of hydrometallurgy:progress and prospect[J].Chinese Journal of Process Engineering,2022,22(2):145-161.
Authors:Sihan SUN  Fusheng PAN  Yongbing XIE  Hongbin CAO  Yi ZHANG
Abstract:Hydrometallurgy has been increasingly used in the treatment of low-grade refractory ores owing to its relatively low energy consumption and cleaner process. Metal leaching is the primary step in hydrometallurgy, but there are still some acute problems such as low metal recovery rate and long reaction time. Chemical oxidation can transfer metal sulfides into metal ions or change the valence state of metals, and thus benefit the following separation and enrichment of the target metals. In this process, the metal leaching rate can also be further improved by external field enhancement. This review mainly describes the application and the main reaction mechanisms of five typical less corrosive chemical oxidants (Fe3+, O2, H2O2, O3 and persulfate), as well as the relevant collaborative oxidation methods in the hydrometallurgical processes, and introduces four strengthening methods by pressurization, special reaction medium, microwave and ultrasonic. Fe3+ is widely used in acidic leaching of chalcopyrite, sphalerite and other sulfide ores. The unique ion pair cycle enables Fe3+ to form a synergistic oxidation leaching mechanism with a variety of oxidants. O2 often enhances the oxidation leaching efficiency by pressure strengthening, which can promote the oxidative decomposition of refractory sulfide ores. H2O2 has attracted wide attention due to its strong oxidizing property and clean oxidation products, and has been widely used in electronic wastes treatment. O3 oxidation can help to effectively release wrapped gold into solution from refractory gold concentrate containing sulfur. Persulfate is relatively stable with strong oxidation ability, and can be activated to generate reactive oxygen species. Collaborative oxidation and four strengthening methods can further take the advantages of each oxidant to improve the oxidation effect and reduce the cost. Finally, the prospect and technical challenges of chemical oxidation strengthened hydrometallurgical technology are prospected, which has guiding significance for the development of clean production technology in hydrometallurgy.
Keywords:Hydrometallurgy process  Chemical oxidative leaching  Refractory ores  Metal recovery  Process reinforcement  
本文献已被 万方数据 等数据库收录!
点击此处可从《过程工程学报》浏览原始摘要信息
点击此处可从《过程工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号