首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2282篇
  免费   305篇
  国内免费   158篇
工业技术   2745篇
  2023年   46篇
  2022年   60篇
  2021年   59篇
  2020年   92篇
  2019年   153篇
  2018年   147篇
  2017年   121篇
  2016年   91篇
  2015年   105篇
  2014年   117篇
  2013年   109篇
  2012年   137篇
  2011年   186篇
  2010年   128篇
  2009年   137篇
  2008年   101篇
  2007年   125篇
  2006年   138篇
  2005年   110篇
  2004年   92篇
  2003年   79篇
  2002年   68篇
  2001年   52篇
  2000年   44篇
  1999年   37篇
  1998年   31篇
  1997年   31篇
  1996年   25篇
  1995年   27篇
  1994年   25篇
  1993年   18篇
  1992年   13篇
  1991年   9篇
  1990年   11篇
  1989年   9篇
  1988年   2篇
  1987年   1篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1951年   1篇
排序方式: 共有2745条查询结果,搜索用时 15 毫秒
1.
Metal/carbon composite materials are highly promising electrocatalysts for water electrolysis. In this work, three composites of metal cobalt nanoparticles highly dispersed in N-doped carbon materials were facilely constructed by pyrolysis of different phenylenediamine based Schiff base-Co complexes (PDBs). Interestingly, the composites derived from PDBs based on different phenylenediamine exhibited different morphologies. The superior case is that rodlike composite catalyst was derived from o-phenylenediamine based PDBs. The obtained catalyst exhibited remarkable performances for both cathodic hydrogen evolution reaction (HER) and anodic oxygen evolution reaction (OER), as well as overall water electrolysis. Only 172 and 289 mV of overpotentials and 1.57 V of cell voltage were exhibited at 10 mA cm?2 for HER, OER and water splitting in 1.0 M KOH, respectively. The catalyst also displayed robust stability and high Faraday efficiency, and thus are potential high-performance catalyst for commercial water electrolysis.  相似文献   
2.
LiFePO4 modified by N-doped graphene (NG) with a three-dimensional conductive network structure was synthesized via a one-step in situ hydrothermal method. The effects of N amount of NG on the phase structure, morphology, and electrochemical properties of LiFePO4 are investigated in this study. X-ray diffraction (XRD) results show that doping suitable N amounts in NG do not alter the crystal structure of LiFePO4, and scanning electron microscopy (SEM) images show that NG can slightly reduce the particle size of LiFePO4. The high-resolution transmission electron microscopy (HRTEM) results show that the LiFePO4 particles are well covered and connected by NG. The electrochemical performance confirms that LiFePO4 modified by 20% N-doped graphene (named LFP/NG-4) displays a perfect specific capacity of 166.6 mAh·g?1 at a rate of 0.2C and can reach 125 mAh·g?1 at a rate of 5 C. Electrochemical impedance spectroscopy (EIS) results illustrate that the charge transfer resistance value of the LFP/NG-4 composite is only 58.6 Ω, which is very low compared with LiFePO4. Cyclic voltammetry (CV) tests indicate that the addition of 20% N-doped graphene can effectively reduce electrode polarization and improve reversibility. The LFP/NG-4 composite with a three-dimensional conductive network structure can be regarded as a promising cathode material for Li-ion batteries.  相似文献   
3.
《Ceramics International》2022,48(12):16997-17008
Effective design and fabrication of novel visible light-oriented photocatalysts is an existing challenging task that requires further dedicated efforts, and it has been always a main concern among the scientific community. This study deals with the design and fabrication of an extremely active and ultrafast ternary photocatalyst based on Ag nanoparticles, polypyrrole doped carbon black (PPy-C) and mesoporous TiO2 (m-TiO2). Sol-gel methodology along with sonication and photodeposition routes have been employed for the successful creation of the ternary framework. Ternary photocatalyst composed of uniform spherical titania nanoparticles (10–15 nm in size) perfectly intermingled with the polymeric linkage of PPy-C. Fruitful creation of unique trio photocatalyst between AgNPs, PPy-C and m-TiO2 was confirmed by XPS and XRD. FTIR analysis further supports the development of nanocomposite photocatalyst. TEM analysis showed uniform spherical m-TiO2 nanoparticles (10–15 nm in size) covered by PPy-C with compact nodes like appearance interlocked very well among each other. The newly developed Ag@PPy-C/m-TiO2 ternary photocatalyst exhibited band gap energy in desired visible range of spectra. The photocatalytic efficiency for all created photocatalysts has been evaluated taking Imidacloprid (insecticide derivative) and methylene blue (MB) dye as target pollutants. The novel Ag@PPy-C/m-TiO2 photocatalyst produced astonishing results with ultrafast removal of both Imidacloprid as well MB dye under visible light irradiation. The newly created ultrafast Ag@PPy-C/m-TiO2 photocatalyst has removed 96.0% of the insecticide Imidacloprid in only 25 min with almost ? 2.65 times more efficient than bare m-TiO2 towards the removal of insecticide derivative. The present report offers a highly encouraging and vastly talented Ag@PPy-C/m-TiO2 ternary photocatalyst, enabling the ideal management of extremely lethal and notorious chemicals.  相似文献   
4.
5.
《Ceramics International》2019,45(11):14153-14159
Highly dense (>98%) and nanograined (∼60 nm) gadolinia doped ceria are obtained from ultrafine powders by adopting two-step sintering (TSS) procedure at an ultralow temperature of 750 °C with a dwell time of 20 h, which is the lowest sintering temperature for ceria family without sintering aids up to now. Electrochemical impedance spectroscopy investigations suggest that the electrical conductivities of densified electrolytes are closely related to sintering temperature and grain size, and GDC900-750 exhibits the highest total electrical conductivity of 3.640 S m−1 at 700 °C in air. Fitting calculation indicates partial grain-size dependence of oxygen vacancy association enthalpy and grain-size independence of oxygen ion migration enthalpy. Grain boundary maturity influences on grain boundary conductivity to some extent, and younger grain boundary endues the densified electrolytes with higher grain boundary conductivity.  相似文献   
6.
In this work, we introduced a simple solution processing method to prepare yttrium (Y) doped hafnium oxide (HfO2) based dielectric films. The films had high densities, low surface roughness, maximum permittivity of about 32, leakage current < 1.0 × 10?7 A/cm2 at 2 MV/cm, and breakdown field >5.0 MV/cm. In addition to dielectric performance, we investigated the influence of YO1.5 fraction on the electronic structure between Y doped HfO2 thin films and silicon (Si) substrates. The valence band electronic structure, energy gap and conduction band structure changed linearly with YO1.5 fraction. Given this cost-effective deposition technique and excellent dielectric performance, solution-processed Y doped HfO2 based thin films have the potential for insulator applications.  相似文献   
7.
8.
A multidisciplinary approach for the production and characterization of a series of high concentration Er~(3+)activated SrLaGa_3 O_7(abbreviated as Er:SLGO) crystal fibers is shown to have a great promise for implementation in mid-infrared laser applications.The current approach includes the design and formation of unique layered tetrahedral network structures with several kinds of rare earth(RE) ions including Er ions distributing statistically between layers,such as Er:SLGO,Er,Nd:SLGO,Er,Yb,Ho:SLGO,Er,Eu:SLGO and Er,Ho:SLGO.Five kinds of Er:SLGO crystal fibers were designed to grow via a micropulling down method.Spectroscopic analyses show that Er,Yb,Ho:SLGO and Nd,Er:SLGO crystal fibers were superiorly endowed with inhomogeneous broadening absorption and strong emission.The unique structural components design enables the generation of improved absorption and emission recombination,and the inhibition of self-termination as well.Generally,the use of structural components design may warrant high-efficiency emissions in RE-doped crystal fibers.  相似文献   
9.
A facile synthesis approach to fabricate Cu-doped MoS2/Bi2S3 (Cu-MoS2/Bi2S3) photocatalysts is reported. The photocatalyst samples with varying amounts of Cu are applied in the photocatalytic splitting of water to produce H2 under the irradiation of simulated solar light. The Cu-MoS2/Bi2S3 photocatalysts with an optimum Cu loading of 20 mol% exhibited high photocatalytic performance, achieving a total H2 yield of 32.4 μmol/h after 6 h of reaction. The photoactivity of the Cu-doped sample was shown to have risen more than 40% than that of pure MoS2/Bi2S3. The improved performance is attributed to the impurity states generated within Cu-doped MoS2, which serve as trapping sites for photogenerated electrons. The effective charge transfer mechanism achieved was evidenced by photoelectrochemical measurements. Based on the experimental results obtained, a plausible mechanism for the photocatalytic process associated with Cu-MoS2/Bi2S3 was proposed.  相似文献   
10.
Nitrogen-doped graphene-ZnS composite (NG-ZnS) was synthesized by thermal treatment of graphene-ZnS composite (G-ZnS) in NH3 medium. In the second step, the as-synthesized samples were deposited on indium tin oxide glass (ITO) by electrophoretic deposition for photocatalytic hydrogen evolution reaction. The as-prepared NG-ZnS-modified ITO electrode displayed excellent photocatalytic activity, rapid transient photocurrent response, superior stability and high recyclability compared to the pure ZnS and G-ZnS-modified ITO electrode due to the synergy between the photocatalytic activity of ZnS nanorods and the large surface area and high conductivity of N-graphene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号