首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The development of non-precious metal-based highly active bi-functional electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is critical factor for making water electrolysis a viable process for large-scale industrial applications. In this study, bi-functional water splitting electrocatalysts in the form of nickel-sulfide/nickel nanoparticles integrated into a three-dimensional N-doped porous carbon matrix, are prepared using NaCl as a porous structure-forming template. Microstructures of the catalytic materials are characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and N2 adsorption-desorption analysis. The most active catalyst synthesized in this study exhibits a low HER overpotential of 70 mV at 10 mA cm−2 and a low Tafel slope of 45 mV dec−1. In OER, the optimized sample performs better than a state-of-the-art RuO2 catalyst and produces an overpotential of 337 mV at 10 mA cm−2, lower than that of RuO2. The newly obtained materials are also used as HER/OER electrocatalysts in a specially assembled two-electrode water splitting cell. The cell demonstrates high activity and good stability in overall water splitting.  相似文献   

2.
Nitrogen, sulfur, and oxygen tri-doped carbon nanosheets (N, S, O-CNs) were prepared by a modified in-situ g-C3N4 template method with a plant-waste, rice straw, as the carbon precursor. The N, S, O-CNs could worked as efficient electrocatalysts for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). Significantly, the introduced S element can particularly activate the electron transfer and accelerate reaction kinetics for HER, while the N/O dopants can efficiently promote the ORR and OER. As a result, the N, S, O-CNs exhibited excellent performance with favorable kinetics and decent durability as a multifunctional ORR, OER and HER catalyst. Moreover, the rechargeable liquid/solid Zn−air battery and water splitting device showed superior performance by assembling this N, S, O-CNs catalyst. This work paves a universal avenue towards further development of plant-waste derived carbon materials with heteroatom dopants as the highly efficient electrocatalysts in energy devices.  相似文献   

3.
Water electrolysis is an efficient approach for high-purity hydrogen production. However, the anodic sluggish oxygen evolution reaction (OER) always needs high overpotential and thus brings about superfluous electricity cost of water electrolysis. Therefore, exploiting highly efficient OER electrocatalysts with small overpotential especially at high current density will undoubtedly boost the development of industrial water electrolysis. Herein, we used a simple hydrothermal method to prepare a novel FeOOH–CoS nanocomposite on nickel foam (NF). The as-prepared FeOOH–CoS/NF catalyst displays an excellent OER performance with extremely low overpotentials of 306 and 329 mV at 500 and 1000 mA cm−2 in 1.0 M KOH, respectively. In addition, the FeOOH–CoS/NF catalyst can maintain excellent catalytic stability for more than 50 h, and the OER catalytic activity shows almost no attenuation no matter after 1000 repeated CV cycles or 50 h of stability test. The high catalytic activity and stability have exceeded most non-noble metal electrocatalysts reported in literature, which makes the FeOOH–CoS/NF composite catalyst have promising applications in the industrial water electrolysis.  相似文献   

4.
An attractive approach to obtain effective and stable electrode for water electrolysis is to directly deposit the electrocatalyst on current collector surface. Herein, we show the influence of electrochemical activation of carbon cloth substrate on the morphology and electrocatalytic properties of bifunctional electrodes for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). A simple one-step electrodeposition technique was applied to directly grow mixed Co-based films on electrochemically activated carbon cloth (EACC) surface. The produced films are composed of metallic Co, and largely amorphous CoO/Co(OH)2 phases. Variation of Co2+ concentration in the solution for electrodeposition enabled tuning the composition of mixed films in order to achieve the optimal HER and OER electrocatalytic performance in 0.1 M KOH. The synthesized electrodes require the overpotentials of 195 mV for HER and 340 mV for OER to deliver the current density of 10 mA/cm2. The results indicate that the facile oxidation of carbon cloth prior to the electrodeposition decreases the overpotential at 10 mA/cm2 by 150 and 60 mV for HER and OER respectively, thus opening the perspective of improving the activity of carbon-based self-supported composite electrocatalytic electrodes for advanced energy conversion processes.  相似文献   

5.
Transition metal catalysts were supposed to be the most likely substitute for commercial noble metal catalysts, and the development of highly active and long-term catalyst for water splitting are the future trend. Herein, Ni rectangular nitrogen doped carbon nanorods@Fe–Co nanocubes (Ni-CNRs@Fe–Co cubes) were fabricated via a facile template-free method. This simple strategy not only realizes the structure tailoring, but also achieves high-quality nitrogen-doping. Specifically, nickel dimethylglyoxime [Ni(dmg)2] with rectangular rodlike structure was firstly synthesized by solution method, then metal-organic frameworks Fe–Co nanocube with different contents were loaded on rectangular carbon nanorods with polydopamine as the locating and the connecting agent, and finally Ni-CNRs@xFe-Co cubes were obtained by a one-step calcination. A series of electrochemical tests were researched on materials with different metal contents in the 1 M KOH solution. The Ni-CNRs@Fe–Co cubes show excellent electrocatalytic activity in the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). For HER and OER, the Tafel slopes were 83.3 mV dec−1 and 71 mV dec−1, the onset potential were −167 mV and 1.62 V, and reached the current densities of 10 mA cm−2, the overpotential just needed 196 mV and 433 mV, respectively. This novel synthetic strategy will provide a template-free way for cheap electrocatalysts of non-precious metal for OER and HER.  相似文献   

6.
The production of clean hydrogen fuel by the electrolysis of water requires highly active, low-cost and facilely prepared electrocatalyst that minimizes energy consumption. Here we report an active cobalt boride (CoB)-derived electrocatalyst for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). The CoB catalyst can be readily deposed on 3D nickel foam (NF) using a simple electroless plating method. A comprehensive analysis of the CoB catalyst with scanning electron microscopy transmission (SEM), transmission electron microscopy (TEM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) techniques revealed that CoOOH is formed on the surface of CoB catalyst during the OER process and Co(OH)2 is formed in the HER process. The catalyst derived from CoB/NF exhibits low overpotentials towards both OER and HER in alkaline solution. The electrolysis cell using the CoB-derived catalyst couple requires a cell voltage of 1.69 V to afford a current density of 10 mA/cm2, which compares favorably with most non-noble bifunctional electrocatalysts. The favorable combination of high-performance, low cost and facile preparation suggests that transition metal borides may act as promising electrocatalyst for water splitting.  相似文献   

7.
The p/n-junction in heteroatoms-doped carbon might be engineered to adjust the population of the charge carriers to perform the oxygen evolution reaction (OER) with holes in a p-type region and hydrogen evolution reaction (HER) with electrons in a n-type region. The carbons (AC) with introduced Fe, Ni and Co species of hierarchical porous structures were derived by pyrolysis of melted poly (styrenesulfonic acid-co-maleic acid) salts. The obtained materials were used as HER, OER and water splitting catalysts. Although all samples were catalytically active, their activity differed depending on the kind of metal. The most promising results were obtained on Ni-AC. An overpotential of Ni-AC to reach 10 mA cm−2 was 259, 382 and 640 mV for HER, OER and water splitting, respectively. Mott-Schottky tests indicated that Ni-AC has p/n-type semiconductor features. While its n-type region was responsible for HER, the p-type region governed OER. A high dispersion of the nickel-based catalytic centers in the hierarchical pore system resulted in an efficient utilization of the active sites for the electron transfer processes. Besides the satisfactory performance, the advantage of the derived catalyst is in its simple synthesis from a commodity polymer.  相似文献   

8.
Water splitting to produce hydrogen and oxygen is considered as a feasible solution to solve the current energy crisis. It is highly desirable to develop inexpensive and efficient electrocatalyst for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this paper, nanostructured Ni-Co-Sn alloys were electrodeposited on copper foil and the excellent electrocatalytic performances for both HER and OER in alkaline media were achieved. The optimized Ni-Co-Sn electrode shows a low onset overpotential of −18 mV and a small Tafel slope of 63 mV/dec for the HER, comparable to many state-of-the-art non-precious metal HER catalysts. For the OER, it produces an overpotential of 270 mV (1.50 V vs. RHE) at current density of 10 mA/cm2, which is better than that of the commercial Ir/C catalyst. In addition to high electrocatalytic activities, it exhibits good stability for both HER and OER. This is the first report that Ni-Co-Sn is served as a cost-effective and highly efficient bifunctional catalyst for water splitting and it will be of great practical value.  相似文献   

9.
The construction of cost-effective bifunctional electrocatalysts with the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is significant for efficient overall water splitting. Herein, this work demonstrates a novel strategy for the synthesis of nickel-cobalt oxides/sulfides/phosphides composite (denoted as NiCoO–2P/S) nanoarrays on Ni foam. In this method, Ni–Co bimetallic oxide nanowires on Ni foam were partially phosphorized and sulfurized simultaneously in situ to yield Ni–Co oxide/sulfide/phosphide composite. The NiCoO–2P/S arrays have good interfacial effects and display many holes in the nanowires, giving it the advantage of large accessible surfaces on the nanowires and a beneficial for the release of gas bubbles, resulting in an excellent OER performance with a low overpotential (η) of 254 mV at 100 mA cm?2 and good HER activity (η10 = 143 mV at 10 mA cm?2). The electrocatalytic test results demonstrate small Tafel slopes (82 mV dec?1 for HER, 88 mV dec?1 for OER) and the satisfying durability in an alkaline electrolyte, indicating that the HER and OER activity was enhanced by the introduction of the Ni/Co sulfides and phosphides into Ni–Co oxides composite nanowires. Furthermore, the as-prepared NiCoO–2P/S catalyst can be used as both the anode and the cathode simultaneously to realize overall water splitting in the two-electrode electrolyzer. This system can be driven at low cell voltages of 1.50 and 1.68 V to achieve current densities of 10 and 100 mA cm?2, respectively. This work provides an alternative strategy to prepare high-performance bifunctional electrochemical materials and demonstrates the advantages of Ni–Co oxide/sulfide/phosphide composites for water splitting.  相似文献   

10.
Herein, we demonstrate an effective strategy to improve the catalytic stability and efficiency of inexpensive bifunctional electrocatalysts via using electrospun Prussian blue analogue derived NiCo alloy nanoparticles encapsulated in nitrogen-doped carbon nanofibers (NiCo@NC) for neutral overall water splitting. The optimal NiCo@NC-900 exhibits the best electrocatalytic activity toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 1 M phosphate-buffered saline (PBS, pH 7), respectively. More importantly, a neutral electrolyzer using NiCo@NC-900 as both HER and OER electrodes achieves high stability with over 140 h and requires a low cell voltage of 1.75 V at 10 mA cm?2. The remarkable stability and superior activity origin form the unique hierarchically porous and encapsulated structure, large surface area, abundant exposing active sites, and synergistic effect between the highly catalytic active NiCo alloy nanoparticles and high-conductivity N-doped carbon nanofibers, as demonstrated by the detailed analysis before and after HER and OER testing.  相似文献   

11.
In order to solve the problem of large overpotential in water electrolysis for hydrogen production, transition metal sulfides are promising bifunctional electrocatalysts for hydrogen evolution reaction/oxygen evolution reaction that can significantly reduce overpotential. In this work, Ni3S2 and amorphous MoSx nanorods directly grown on Ni foam (Ni3S2-MoSx/NF) were prepared via one-step solvothermal process, which were used as a high-efficient electrocatalyst for overall water splitting. The Ni3S2-MoSx/NF composite exhibits very low overpotentials of 65 and 312 mV to reach 10 mA cm−2 and 50 mA cm−2 in 1.0 M KOH for HER and OER, respectively. Besides, it exhibits a low Tafel slope (81 mV dec−1 for HER, 103 mV dec−1 for OER), high exchange current density (1.51 mA cm−2 for HER, 0.26 mA cm−2 for OER), and remarkable long-term cycle stability. This work provides new perspective for further the development of highly effective non-noble-metal materials in the energy field.  相似文献   

12.
Efficient and sustainable Janus catalysts toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are highly desirable for future hydrogen production via water electrolysis. Herein we report an active Janus electrocatalyst of amorphous-crystalline cobalt-molybdenum bimetallic phosphide heterostructured nanosheets on nickel foam (CoMoP/CoP/NF) for efficient electrolysis of alkaline water. As-reported CoMoP/CoP/NF consists of amorphous bimetal phosphide nanosheets doped with crystalline CoMoP/CoP heterostructured nanoparticles on NF. It can efficiently catalyze both HER (η = 127 mV@100 mA cm?2) and OER (η = 308 mV@100 mA cm?2) in alkaline electrolyte with long-term durability. Serving as anode and cathode of water electrolyzer, CoMoP/CoP/NF generates electrolytic current of 10, 50 and 100 mA cm?2 at low voltage of 1.50, 1.59, and 1.67 V, respectively.  相似文献   

13.
As a multi-step and more complex half-cell reaction than the hydrogen reverse evolution reaction (HER), the oxygen evolution reaction (OER) always requires a higher overpotential than HER. In order to minimize the associated energy loss as an overpotential, these electrochemical half-reactions of water splitting should be catalyzed by suitable materials. Due to the abundant exposed surface area and extensive active edge sites, black phosphorous quantum dots (BP QDs) have shown great potential in OER. Here, BP QDs was introduced to incorporate with bio-based carbon nanofibers (CNF) and Co–Ni bimetallic organic framework (CoNiMOF), preparing a novel catalyst for oxygen evolution reaction (OER) by a facile one-pot reaction (Scheme 1). The unique structures and greater BET surface areas of CoNiMOF-BP QDs/CNF could possibly supply a larger electrocatalytic surface, expose further active sites. The obtained CoNiMOF-BP QDs/CNF possesses excellent electrocatalytic activity in alkaline electrolyte (1 M KOH) with a low overpotential of 281 mV at 10 mA cm?2 and a low Tafel slope of 111.9 mV dec?1. The CoNiMOF-BP QDs/CNF can remain stable for 25,000 s under alkaline electrolyte, showing excellent stability. The increase of electrocatalyst activity is mainly attributed to the synergistic effect of excellent conductivity and enriched active sites arising from BP QDs. This work not only provides an effective strategy for the development of bimetallic MOFs derived electrocatalysts, but also puts forward a new insight for the application of BP QDs in water splitting.  相似文献   

14.
Hydrogen (H2) is a carbon-free clean energy source and can be generated from water by electrolysis. The fabrication of highly sustainable electrode materials to replace expensive platinum is vital for the supportable production of molecular hydrogen via electrolysis of water. Nickel based electrode materials have attracted a great attention in the water splitting reaction. In this context, supporting material such as carbon is adopted to increase the catalytic activity. In this study, a special route was advanced to construct carbon supported Ni3N/Ni, which was as an effective electrocatalyst for hydrogen evolution reaction (HER) in both 0.5 M H2SO4 and 1 M KOH electrolytes. We observed that the carbon support can effectively improve the electronic structure of Ni3N/Ni by introducing intrinsic active sites. The optimized Ni3N/Ni@C composite showed superior electrical conductivity and charge transfer rate. Consequently, the Ni3N/Ni@C750 °C composite showed enhanced electrocatalytic behaviour with a small overpotential of 163 and 172 mV to attain an optimal current density of 10 mA cm−2 and durability over 1000 cycles in acid and alkaline electrolytes towards HER application.  相似文献   

15.
Fabrication of multicomponent materials is the most effective strategy to develop high-performance multifunctional catalysts. In this work, a series of bimetallic Fe–Co chalcogenophosphates were facilely prepared and used as bifunctional water electrolysis catalysts. The results have shown that the obtained catalysts showed high performances for hydrogen and oxygen evolution reactions, and overall water splitting. For the optimum catalyst, only 260 and 365 mV of overpotential for HER and OER, and 1.59 V of cell voltage for water splitting was needed respectively in 1 M KOH when 10 mA cm?2 of current density was reached. High stability and Faraday efficiency were also obtained, and the obtained results confirm that the catalyst is competitive in application in water electrolysis.  相似文献   

16.
Efficient catalysts towards overall water electrolysis in alkaline electrolytes were highly desirable for the hydrogen production technology. The surface electronic states of copper in CuS nanocrystal catalysts were modified by iron doping through a simple wet-chemical method. The iron-doped CuS catalysts displayed drastically enhanced catalytic activities for overall water electrolysis in the strong alkaline electrolyte of 1 M KOH after a simple cyclic voltammetry activation. The optimized catalytic performance for overall water electrolysis was achieved in the CuFe0.6S1.6 catalyst, which exhibited a low overpotential of ?237 mV for HER and 302 mV for OER to reach 10 mA cm?2. The high activities for overall water electrolysis in CuFe0.6S1.6 were induced by the enhanced charge transfer from Cu to S via iron doping, which not only modified the surface electronic state of copper but also enhanced charge transfer during the electrochemical reactions. Moreover, the catalysts displayed satisfying stability for over 20 h at a high current density of 300 mA cm?2 for both HER and OER, showing great potential for industrial water electrolysis.  相似文献   

17.
The development of cheap, efficient, and active non-noble metal electrocatalysts for total hydrolysis of water (oxygen evolution reaction (OER) and hydrogen evolution reaction (HER)) is of great significance to promote the application of water splitting. Herein, a heterogeneous structured electrode based on FeAlCrMoV high-entropy alloy (HEA) was synthesized as a cost-effective electrocatalyst for hydrogen and oxygen evolution reactions in alkaline media. In combination of the interfacial synergistic effect and the high-entropy coordination environment, flower-like HEA/MoS2/MoP exhibited the excellent HER and OER electrocatalytic performance. It showed a low overpotential of 230 mV at the current density of 10 mA cm−2 for OER and 148 mV for HER in alkaline electrolyte, respectively. Furthermore, HEA/MoS2/MoP as both anode and cathode also exhibited an overpotential of 1.60 V for overall water splitting. This work provides a new strategy for heterogeneous structure construction and overall water splitting based on high-entropy alloys.  相似文献   

18.
It is imperative for electrochemical water splitting to seek functional materials with high performance, competence, durability, economical, and eco-friendly. Herein, we develop a simplistic two-step annealing strategy to synthesize the hierarchical Co/MoO2@nitrogen (N)-doped carbon nanosheets (CMO@NC) electrocatalysts derived from the low-cost and sustainable lotus leaves biomass for water-splitting. The optimum catalyst (CMO@NC/450) exhibits a notable low overpotential of 130 and 272 mV at a current density of 10 mA cm?2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 1.0 M KOH, owing to their unique surface features, large surface area, abundant meso/micropores, and high pyridinic N-contents. Also, the CMO@NC/450 catalyst-equipped with a two-electrode configuration exhibits notable water splitting activity only requires a cell-potential of 1.629 V@10 mA cm?2 in 1.0 M KOH. The results reveal that hierarchical flower-like morphology increases the contact area, prevents aggregation, and enables massive active-sites for HER and OER. Additionally, the synergistic effects between Co/MoO2 and the N-doped-carbon heterostructure enhance charge-delocalization, ultimately improving electrocatalytic performance and stability. This work is aimed to promote the exploration and design of suitable doping structures and compositions for the development of highly effective and sustainable biomass-derived catalysts in a wide-range of electrochemical applications.  相似文献   

19.
It is of great significance to develop a highly active, durable and inexpensive bifunctional electrocatalyst for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, we report a tungsten-doped nickel phosphide nanosheets based on carbon cloth (W–Ni2P NS/CC) as an efficient bifunctional catalyst through simple hydrothermal and phosphorization for overall water splitting in 1 M KOH. The W–Ni2P NS/CC exhibits excellent electrochemical performance with low overpotentials for HER (η10 = 71 mV, η50 = 160 mV) and OER (η20 = 307 mV, η50 = 382 mV) in 1 M KOH, as well as superior long-term stability. Moreover, W–Ni2P NS/CC as a bifunctional catalyst reveals remarkable activity with a low voltage of 1.55 V to reach a current density of 20 mA cm−2. This work provides a viable bifunctional catalyst for the overall water splitting.  相似文献   

20.
Rationally designing an efficient and cost-effective bifunctional electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is a primary matter in applying electrocatalytic water splitting. Herein, a self-supported FeNiCo-based amorphous catalyst with a hierarchical micro/nanoporous structure is fabricated by dealloying an amorphous/nanocrystalline precursor. The amorphous nanoporous framework enables the prepared electrocatalyst to afford fast reaction kinetics, abundant active sites, and enhanced electrochemical active surface areas (ECSAs). Such structural advantages and the synergistic effects of the ternary transition metals contribute to a dramatic catalytic activity of this electrocatalyst under alkaline conditions, which delivers the current density of 10 mA cm−2 at a low overpotential of 134 mV for HER and 206 mV for OER, respectively. Furthermore, a full electrolysis apparatus constructed by the self-supported hierarchical micro/nanoporous FeNiCo-based amorphous electrocatalyst as both cathode and anode acquires a dramatically low voltage of 1.58 V operating at 10 mA cm−2 along with stability for more than 24 h for overall water splitting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号