首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   198篇
  免费   0篇
  国内免费   1篇
工业技术   199篇
  2013年   176篇
  2007年   5篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2001年   4篇
  1999年   2篇
  1998年   4篇
排序方式: 共有199条查询结果,搜索用时 31 毫秒
1.
《粉末冶金学》2013,56(4):315-321
Abstract

Low porosity powder metallurgy compacts have been manufactured from treated elemental iron and cobalt powders sintered at 1150°C under an H2(g) atmosphere. Their microstructures consist of an interconnected mixed oxide network which encapsulates both the iron and cobalt phases. The production technique employed is an innovative process termed reacto-thermitic sintering (RTS), which leads to near full density and near net shape parts utilising conventional uniaxial compaction and mesh belt furnace practices. The RTS technique relies on microscale exothermic reaction between small quantities of added elemental Al and oxides present on the surface of the bulk powder, together with the bulk powder itself. This results in the production of a transient liquid phase which freezes rapidly and consolidates the compact without slumping. In order to generate an interconnected mixed oxide network, experiments were designed such that the Al powder reacts with the cobalt and the surface of the iron powder which is artificially doped with Fe and Cr oxides.

Differential thermal analysis (DTA) and energy balance calculations revealed that the Al and the oxide coating reaction does not proceed directly. Instead the main contribution to the exothermic process is the reaction between Al and Co/Fe. The system does not exhibit true RTS behaviour and the interconnected network of mixed Al, Cr, and Fe oxides is created by subsequent reaction of Co-Al and Fe-Al intermetallics with the artificial Fe-Cr oxide coating on the Fe. The microstructure obtained exhibits negligible porosity with the metallic particles on the whole fully encapsulated by the oxide.  相似文献   
2.
none 《粉末冶金学》2013,56(1):33-38
Abstract

Metaliron powders of well controlled size and morphology were synthesised by thermal decomposition under hydrogen of precipitated ferrous oxalates. Green compacts were prepared by uniaxial pressing of metal powders at 290 MPa. The bending green strengths of compacts were measured.

The precipitation of β-FeC2O4.2H2O oxalate from ammonium oxalate gives rise to the formation of spherical particles by aggregation ofelongated grains. Thermal decomposition of this oxalate from 400 to 500°C under hydrogen permits metal iron particles with a rough surface to be obtained. Decomposition occurring above 500°C induces a smoothness of the particle surface. Metal particles synthesised at 500°C show both surface roughness and micrometer sized primary grains.This specific microstructure has allowed the highest value ofcompact green strength (31·7 MPa) to be obtained.

Acicular shaping of the β-FeC2O4.2H2O particles precipitated from oxalic acid involves, after decomposition, an increase in the surface roughness and shape irregularity of the metal particles, owing to an entanglement of the elementary grains. An exceptional value (about 60 MPa) for the metal compact green strength was thus obtained for this type of powder.  相似文献   
3.
《钢铁冶炼》2013,40(6):473-480
Abstract

This study investigates some effects of austenite microstructure on processes leading to copper hot shortness. Low carbon steels containing 0˙55 wt-% copper were subjected to two thermal profiles in an infrared image furnace with attached confocal scanning laser microscope: hold at 1150°C for 60 s; hold at 1150°C for 60 s, quench to 400°C, reheat to 1150°C. Heat treatments were conducted in dried/deoxidised argon to image microstructures. Subsequent samples were oxidised in air. The oxide/metal interface was studied in a scanning electron microscope. Additional confocal scanning laser microscope experiments involved melting copper directly on the steel. After quench/reheat, austenite grain size decreased by a factor of ~1˙7 and grain boundaries were redistributed. Copper evolved during the first heating was no longer found at boundaries. Results from direct copper exposure reveal an apparent effect of boundary character on copper penetration rate. Possible mechanisms by which hot shortness is affected are discussed.  相似文献   
4.
Abstract

Use of numerical predictive methods such as finite element analysis is becoming progressively more common for modelling industrial hot metal working and forming processes. These tools are used not only to predict the thermomechanical behaviour of metals but increasingly to predict microstructural changes by linking them to physical models of recrystallisation and textural evolution. This paper describes the development and application of a fully integrated model for the prediction of thermomechanical and microstructural behaviour during multipass hot rolling of aluminium alloy AA 3104. Finite element code ABAQUS/standard has been used in the work and the process is modelled assuming plane strain conditions. It is shown that for this alloy the static recrystallisation which occurs during interpass cooling does not significantly influence the thermomechanical response during subsequent rolling passes.  相似文献   
5.
Abstract

Nickel based superalloys are critical to the safe operation of many energy conversion systems operating at high temperatures. Time dependent intergranular cracking of these alloys, under both sustained and cyclic loads, is dominated by environmental interactions at the crack tip. This review is concerned mainly with the interaction of oxygen in alloys used for combustion turbine discs, although interactions with other more aggressive species are considered. The phenomenology of this cracking is shown to be consistent with the same mechanism as that associated with oxygen embrittlement resulting from pre-exposure of uncracked material, and also with environmentally induced reduction in creep rupture life. Gas phase embrittlement (GPE), resulting from intergranular oxygen penetration, is shown to be responsible for all four streams of experimental observations. Three distinct processes of intergranular embrittlement involving oxidation reactions have been confirmed experimentally. One of these, the oxidation of intergranular sulphides, results in elemental sulphur embrittlement and subsequent local decohesion under stress. The other two, oxidation of carbon or carbides to form carbon dioxide gas bubbles and oxidation of strong oxide formers to form intergranular internal oxides, result in a reduction of the local ability to accommodate stress concentrations associated with sliding grain boundaries in an intermediate temperature range. This in turn leads to a temperature dependent minimum in ductility and maximum in crack propagation rate. Attempts to reduce the sensitivity to time dependent cracking based on chemistry (chromium level or trace element addition), microstructure control (using thermal–mechanical treatment or controlled cooling), or reversal of environmental embrittlement, are all considered. The conclusions form a basis for the development of life prediction methods for energy materials operating in diverse environments.  相似文献   
6.
An account is given of an experimental investigation of the cylindrical snarling of highly twisted monofilaments.

The theory underlying cylindrical snarling is set out, and an expression is derived for calculating the critical twist level at which normal snarling will be replaced by cylindrical snarling. Experiments on rubber filaments are described, and it is shown that there is good agreement between the theoretical and experimental results. Further experiments, in which the specimen was allowed to contract freely or forced into other forms, are also described.

It is shown from these experiments that it is difficult to establish the true equilibrium behaviour, since the situation appears to be dominated by frictional effects or by direct barriers to relative movement.  相似文献   
7.
Abstract

In quench hardening, it is important to determine the boiling state (film, nucleate or convection), in order to control the cooling process. However, the boiling state changes with time and with position on the specimen. A new method developed to discriminate the boiling states is described. High frequency induction heating was applied to stabilise the boiling state and the sound of boiling was monitored with an underwater microphone. The results were evaluated by using fast Fourier transform spectroscopy. For the results obtained using high frequency induction heating and various quenching methods, the boiling states could be discriminated by matching the sound frequency of the sample. Consequently, it was possible to discriminate the boiling states from the frequency observed in nucleate boiling, which has a characteristic frequency band and high intensity compared with film and convection states.  相似文献   
8.
Abstract

The aim of the present work was to investigate the fluidity of four different high pressure die cast Al–Si alloys at different pouring temperatures. A vacuum fluidity test apparatus was employed to measure fluidity. The analysed alloys showed different flow sensitivities to casting temperatures. Furthermore, it is showed that among the considered alloying elements, magnesium and silicon affected the fluidity of the melt. One alloy was then contaminated with 50% scrap addition, increasing the amount of oxide inclusions. The fluidity of the contaminated melt has then been measured and compared with the fluidity of the clean melt. The results show that the fluidity of the alloy with scrap addition is lower than that of the clean melt. Further the fluidity linearly increases at increasing temperatures within the range between 580 and 680°C until it reaches a plateau at the highest pouring temperatures.  相似文献   
9.
An account is given of an experimental investigation of the normal snarling of highly twisted monofilaments, those used being vulcanized rubber and nylon.

An earlier theoretical analysis is corrected, and the experimental results show that, after this correction, the theory put forward for the mechanical properties of the snarling mechanism holds reasonably well for elastic filaments. Although, as would be expected, there are larger deviations from the theory for viscoelastic filaments, the theory still gives a good indication of the behaviour of these filaments under torsion.  相似文献   
10.
Abstract

A numerical model of crack initiation under high cycle fatigue loading from pits is investigated in this paper. A probability based pit growth model, which takes into account the influence of mechanical cyclic load and particle clusters present in alloys, is used for investigations. Critical pit sizes, calculated using linear elastic fracture mechanics principles, are used to determine the probability of crack initiation for different conditions. The results are critically compared to extract an insight on the parameters that control the pit growth behaviour and thereby the fatigue crack initiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号