首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   198篇
  免费   0篇
  国内免费   1篇
工业技术   199篇
  2013年   176篇
  2007年   5篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2001年   4篇
  1999年   2篇
  1998年   4篇
排序方式: 共有199条查询结果,搜索用时 421 毫秒
11.
Abstract

A new cost effective process for generating different weld element compositions has been examined. Utilising tandem welding technology, different series aluminium filler wires were mixed in a single weld pool with the result that the composition of the principal alloy elements, copper and magnesium were accurately controlled. Thermodynamic modelling was then used to predict an optimum weld bead composition for eliminating solidification cracking when welding Al2024. In order to validate the predicted target composition, the tandem process was used to control the composition of the weld bead. The presented results show that using this system to deposit a controlled ternary composition weld, solidification cracking was eliminated when welding highly constrained test pieces. In contrast, cracking was evident when using commercially available binary filler wires under the same conditions.  相似文献   
12.
Abstract

The addition of Re, Fe and Cr into Ti–50 mol.-%Ni has been carried out to improve the oxidation and mechanical properties. The mono phase consisting of TiNi with the B2 type structure was identified in micro-alloyed materials proposed on the basis of the d-electrons concept. Experimentally, TiNi alloys were melted and solidified by the cold crucible levitation melting (CCLM) method. The TiNi–(Cr, Fe, Re) alloys with high purity and without contamination from a crucible were prepared, and the homogeneous microstructure was achieved by the diffusion mixing effect of CCLM even in the as-cast alloys which contained Re and Cr with higher melting temperatures and different specific gravities. The transformation from austenite to martensite phases occurred in all alloys below or above room temperature. Some alloys had the ability of shape memory even at room temperature. Ternary alloys showed a higher flow stress level compared with the binary TiNi alloy. On the other hand, the oxidation at 1273 K was promoted by the formation of titanium oxides (TiO2) on the alloy surfaces. The oxidation resistance was improved by the formation of the continuous Cr2O3 film in TiNi–Cr alloys. The alloying effects by ternary elements (Re, Fe, Cr) in the intermetallic TiNi as well as metallic materials were explained well using two parameters used in the d-electrons concept.  相似文献   
13.
Abstract

Nickel based superalloys are critical to the safe operation of many energy conversion systems operating at high temperatures. Time dependent intergranular cracking of these alloys, under both sustained and cyclic loads, is dominated by environmental interactions at the crack tip. This review is concerned mainly with the interaction of oxygen in alloys used for combustion turbine discs, although interactions with other more aggressive species are considered. The phenomenology of this cracking is shown to be consistent with the same mechanism as that associated with oxygen embrittlement resulting from pre-exposure of uncracked material, and also with environmentally induced reduction in creep rupture life. Gas phase embrittlement (GPE), resulting from intergranular oxygen penetration, is shown to be responsible for all four streams of experimental observations. Three distinct processes of intergranular embrittlement involving oxidation reactions have been confirmed experimentally. One of these, the oxidation of intergranular sulphides, results in elemental sulphur embrittlement and subsequent local decohesion under stress. The other two, oxidation of carbon or carbides to form carbon dioxide gas bubbles and oxidation of strong oxide formers to form intergranular internal oxides, result in a reduction of the local ability to accommodate stress concentrations associated with sliding grain boundaries in an intermediate temperature range. This in turn leads to a temperature dependent minimum in ductility and maximum in crack propagation rate. Attempts to reduce the sensitivity to time dependent cracking based on chemistry (chromium level or trace element addition), microstructure control (using thermal–mechanical treatment or controlled cooling), or reversal of environmental embrittlement, are all considered. The conclusions form a basis for the development of life prediction methods for energy materials operating in diverse environments.  相似文献   
14.
Abstract

The microstructure of laser welded austenitic twinning induced plasticity steel sheets joints was investigated by means of optical microscopy, SEM and electron backscattering diffraction in order to differentiate the fusion zone, heat affected zone and base material, as well as to establish present phases, grain size distribution and grain misorientation distribution caused by the welding process. Measurements of EDX were taken into account to evaluate the effect of Mn segregations. Microhardness measurements and tensile tests were performed to evaluate the mechanical properties of the joints. In addition, the twinning phenomena progress was assessed by investigating the texture evolution in the base material and fusion zone of samples plastically deformed by 5, 10 and 15%. Grain refinement was found in the fusion zone affecting substantially the mechanical properties of the welding, being the most resistant and harder region.  相似文献   
15.
Abstract

The fatigue properties of Al–Si alloy cold sprayed Al and Al–SiC composite coatings have been studied. The specimens coated with composites reinforced with a large volume (25%) of fine SiC particles exhibited improved adhesion strength at the interface due to crater formation, and cyclic fatigue lives at room temperature more than three times those of uncoated specimens. In high temperature low cycle fatigue tests at 250°C, the pure Al coatings showed longer fatigue lives than the Al–SiC composite coatings, which is attributed to an increment in ductility at the surface retarding fatigue crack initiation.  相似文献   
16.
Abstract

As welding speeds continually increase owing to automation and newer processes, a common defect that occurs is humping. Humping is the periodic occurrence of beadlike protuberances. The objective of the present investigation is to review current and previous researches that were made on humping, including both experimental and theoretical studies. It is found that humping can be classified into two distinct categories of formation: gouging region morphology and beaded cylinder morphology. Various theories that explain the two types of humping formation are examined. Experimental data compiled from many sources are presented to verify the models and explain the fundamental mechanisms of humping morphology. Humping prevention measures that can be applied directly to industrial fabrication are also included. The direct benefit is increased travel speeds that reduce production costs.  相似文献   
17.
Abstract

A numerical model of crack initiation under high cycle fatigue loading from pits is investigated in this paper. A probability based pit growth model, which takes into account the influence of mechanical cyclic load and particle clusters present in alloys, is used for investigations. Critical pit sizes, calculated using linear elastic fracture mechanics principles, are used to determine the probability of crack initiation for different conditions. The results are critically compared to extract an insight on the parameters that control the pit growth behaviour and thereby the fatigue crack initiation.  相似文献   
18.
High-resolution ultrasonic spectroscopy is a novel technique with enormous potential for analysis of a wide range of samples and processes. This technique is based on precision measurements of velocity and attenuation of acoustical waves at high frequencies propagating through materials. It allows fast at/on line measurements analysis of formulation consistency (composition, structure) of raw materials, ingredients and intermediates, process impurity analysis, particle sizing, batch to batch variation, stability assessment etc in pharmaceutical industry. The technology can be used for static fingerprint measurements or for dynamic analysis of systems. Optical transparency is not required as ultrasonic waves propagate through opaque samples. The analysis is fast and non-destructive. High-resolution ultrasonic spectrometers were developed, patented and brought to the market by Ultrasonic Scientific Ltd. and recognised with various international awards. These instruments require small sample volumes, down to 0.03 ml, and give excellent resolution. They can be used for the analysis of composition, aggregation, particle sizing, gelation, micellisation, crystallisation, sedimentation, enzymatic activity, conformational transitions in polymers, biopolymer-ligand binding and antigen-antibody interactions, etc. This article describes main features of High-Resolution Ultrasonic Spectroscopy and area of applications of new high-resolution HR-US series of ultrasonic spectrometers. Several applications are illustrated including the monitoring of denaturation and aggregation of proteins in antibody solution, the measurements of the particle size in emulsions, precipitation in synthetic blood substitutes and crystallisation  相似文献   
19.
20 mm thick plates of 2519-T87 high strength aluminum alloy have been welded.The effects of the compositions of filler wires,the heat input and the compositions of shielding gas on the mechanical properties and microstructure of the welded joint have been investigated.The results indicate that finer microstructure,better mechanical properties and higher value of hardness of HAZ can be obtained by using lower heat input.The use of Ar/He mixed shielding gas has several advan- tages over pure Ar shielding gas.With the increase of the proportion of He in the mixed shielding gas, the grain size of the weld metal as well as porosity susceptibility decreases.When the volume ratio of He to Ar reaches 7:3,the porosity and the grain size of weld metal reach the minimum,and the po- rosity can be further reduced by filling some CO_2.  相似文献   
20.
During plastic process,the material flow is strongly influenced by the contact area between deformed workpiece and die.In rolling process,difference of roll diameter makes the contact area between roll and deformed tape different,which leads to different material flow and the distribution of powder density.A numerical modelling of the first rolling process for 61-filament high temperature superconducting tape is constructed and the influences of roll diameters on deformation behavior of the tape are discussed.It can be found that the BiSrCaCuO(BSCCO)powder in the center of the tape has higher relative density than those in the periphery of the tape during rolling process.With the increase of roll diameter,the length of the contact arc in the roll gap expands which lead to the in- creasing of transversal strain and the decreasing of the related longitudinal strain.It makes the value of longitudinal strain ratio decrease gradually,which decreases the possibility of occurrence of the transversal shear band,simultaneously it increases the risk of occurrence of longitudinal crack.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号