首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45819篇
  免费   3928篇
  国内免费   1588篇
工业技术   51335篇
  2024年   279篇
  2023年   1369篇
  2022年   1263篇
  2021年   1494篇
  2020年   1343篇
  2019年   1489篇
  2018年   857篇
  2017年   1224篇
  2016年   1362篇
  2015年   1473篇
  2014年   2816篇
  2013年   2066篇
  2012年   2564篇
  2011年   2487篇
  2010年   2335篇
  2009年   2422篇
  2008年   2541篇
  2007年   2354篇
  2006年   2283篇
  2005年   1963篇
  2004年   1876篇
  2003年   1521篇
  2002年   1490篇
  2001年   1281篇
  2000年   1157篇
  1999年   966篇
  1998年   939篇
  1997年   863篇
  1996年   768篇
  1995年   736篇
  1994年   693篇
  1993年   625篇
  1992年   572篇
  1991年   589篇
  1990年   530篇
  1989年   559篇
  1988年   81篇
  1987年   46篇
  1986年   11篇
  1985年   13篇
  1984年   10篇
  1983年   5篇
  1982年   5篇
  1981年   4篇
  1980年   5篇
  1979年   1篇
  1965年   3篇
  1959年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《石油机械》2021,(1):124-131
碳纤维连续抽油杆(简称碳纤维杆)具有质量轻、抗拉强度高和抗腐蚀性强等优点,用于深井、超深井和腐蚀性油井可大大降低能耗、提高采油效率,但是由于碳纤维杆的抗剪能力差、表面摩擦因数低,已有的碳纤维杆夹持系统提升力不足、伤杆断杆等问题突出,大大影响了碳纤维杆技术的推广应用。为了解决碳纤维杆的夹持难题,开展了碳纤维杆的基础性能评价、夹持摩擦副材料开发、表面结构及介质影响配套夹持系统试验等方面的研究工作。通过试验对比研究,优选了碳纤维杆的夹持摩擦副材料和夹持表面结构形式,提高了对碳纤维杆夹持的提升力和可靠性;结合碳纤维杆作业机注入头夹持系统非对称运动的特性,优化了夹持块的结构,并对夹持块切入角部位采用软合金材料,解决了碳纤维杆夹持时存在的错位夹持块弯折咬杆和注入头运转时的切入角磕碰伤杆问题。配套作业机注入头形成的碳纤维杆无损伤夹持技术,为碳纤维杆技术在油田的推广应用奠定了基础。  相似文献   
2.
氢脆具有很强的微观组织敏感性,威胁着各类高强结构材料的安全服役.采用激光-电弧复合焊工艺对BS960E型高强钢进行焊接,并对接头在原位电化学充氢的条件下进行慢应变速率(10-5s-1)拉伸试验,结合微观组织和断裂特征进行分析并对接头的氢脆行为进行研究.结果 表明,焊接热循环所形成的富马氏体中的细晶区可以使接头表现出一定的氢脆敏感性,马氏体较大的氢扩散系数和较低的氢溶解度以及氢在晶界上的快速扩散是引起接头对氢脆敏感的主要原因,通过控制焊接工艺参数可抑制焊接热循环所引起的马氏体转变量,能够降低BS960E型高强钢激光-电弧复合焊接头的氢脆敏感性.  相似文献   
3.
针对深竖井、大吨位的提升条件下,摩擦衬垫需要高比压和高摩擦因数的难题,在工况分析和参数设计的基础上,研制了比压为2.5 MPa、摩擦因数为0.28的摩擦衬垫,并分别对衬垫的稳定性、抗比压能力、硬度特性、压力特性和磨损情况进行试验.委托第三方检测验证,衬垫的比压试验值达到9.8 MPa,摩擦因数试验值达到0.381,满足实验室的指标要求.  相似文献   
4.
针对径向永磁联轴器在制造和安装的过程中,主从动转子间易产生同轴度误差,从而引起传动不平稳、效率降低等问题。首先通过磁场分析得到同轴度误差的存在会导致磁力线分布和磁感应强度出现明显的不均匀变化,再利用磁荷库伦定律建立同轴度误差下径向永磁联轴器传动特性的数学模型,推导出相应转矩计算公式,并将公式计算值与仿真测试得到的径向永磁联轴器稳定传递转矩数值分析比对,验证所得转矩公式的正确性。最后根据公式的计算结果分析不同结构参数下同轴度误差对系统传递转矩的影响,得出为保证各型号尺寸的联轴器系统可实现正常传动时的安装精度。  相似文献   
5.
以FeS和CuSn8Ni1粉末为原料,利用机械合金化技术和粉末冶金技术制备了FeS/Cu复合材料,探讨了不同载荷情况下所制备的FeS/Cu复合材料的摩擦学性能及润滑膜与转移膜特征。结果表明:机械合金化提高了FeS与铜合金基体界面结合性能,进而提高了材料减摩耐磨性能;当载荷较小时,摩擦副表面接触不稳定,复合转移膜不连续,摩擦因数波动大;载荷较大时,复合转移膜易破损,材料的减摩耐磨性能变差;当载荷为150 N时,载荷适宜,材料表面软化,复合转移膜更加完整,摩擦因数较小。  相似文献   
6.
利用三种基于不同铆钉穿透机理的搅拌摩擦单面铆接工艺(Friction stir blind riveting, FSBR)对AA6061-T6(厚度为1 mm)与AA6022-T4(厚度为2 mm)铝合金板进行了铆接。发现完全依靠挤压机理实现铆钉穿透的工艺(FSBR-III),其最大铆钉穿透力比另外两种同时依靠挤压与切削机理实现铆钉穿透的工艺(即FSBR-I和FSBR-II)分别高33%与83%。通过分析铆钉穿透单一工件的过程,建立了工件材料去除率与铆钉穿透力的关系曲线,并综合考虑铆钉穿透机理以及摩擦热的影响,分析了穿透过程中不同结构铆钉的穿透力变化规律。研究发现,挤压机理在铆钉穿透机理中所占比重越高,则相同材料去除率下铆钉穿透力越大,同时穿透力受摩擦热的影响越明显。此外,通过接头断面观察,发现铆钉切削性能更优异的FSBR-II,所得接头中的上下工件间隙最小;FSBR-I与FSBR-II工艺会产生切屑,而在FSBR-III连接过程中没有切屑产生。  相似文献   
7.
杨宽  阎昌琪  曹夏昕 《化工学报》2020,71(7):3060-3070
采用去离子水作为实验工质,在低压低流速自然循环工况下开展了单面加热可视化窄矩形通道内的过冷沸腾摩擦阻力特性实验研究。实验中测量了实验段内的压降数据,并通过高速摄影仪拍摄了窄矩形通道内的气液两相图像,提出了过冷沸腾条件下的两相摩擦压降的剥离计算方法。基于本实验中获得摩擦压降数据,对分别基于均相流模型和分液相模型的经典两相摩擦压降计算关系式进行了评估,实验结果表明:采用不同等效黏度计算方法的均相流模型计算结果比实验值明显偏小;而分相流模型中,Sun and Mishiba关系式和Tran关系式均能够较好地预测摩擦阻力,计算值与实验值的平均相对偏差在±15%以内。结合实验数据,以分相流模型方法为基础,考虑全液相Reynolds数、Martinelli参数和Laplace数的影响,获得了计算分液相折算系数的经验关系式,与实验数据符合较好, 平均相对误差在10%范围内。  相似文献   
8.
基于神经网络和遗传算法的锭子弹性管性能优化   总被引:1,自引:0,他引:1  
为得到减振弹性管对下锭胆的支承弹性和锭子高速运动下的稳定性等性能的最优匹配效率,依据减振弹性管的等效抗弯刚度及底部等效刚度系数公式,利用MatLab数值分析软件构建弹性管抗弯刚度和底部挠度数学模型。首先,结合Isight优化软件基于径向基神经网络构建其近似模型,且使精度达到可接受水平,并以模型的关键结构参数弹性模量、螺距、槽宽、壁厚为设计变量,结合遗传算法对弹性管抗弯刚度和底部挠度进行多目标优化设计,得到Pareto最优解集和Pareto前沿图,确定出减振弹性管结构工艺参数的优化方案。通过对优化数据进行分析发现,该方案在保证减振弹性管弹性的同时,其底部振幅明显减弱。  相似文献   
9.
随着科技的发展,铝合金在生活中的作用越来越重要。由于理化性能优异、耐蚀能力强,铝合金已经广泛应用于各工业焊接结构上,例如飞机、轻形汽车、大小化工容器等都采用了铝合金材料。钨极气体保护焊(GTAW)是一种很好的焊接方法,可以焊接大多数金属材料,尤其是有色金属,很好地发挥其优点。GTAW焊接铝合金,焊缝中的气孔不好控制,而焊缝中含有一定量的气孔,对焊缝的力学性能、塑韧性会有一定影响,这就限制了铝合金的应用。现简单介绍GTAW焊接铝合金如何控制焊缝中气孔,从而扩大铝合金在焊接结构上的应用。  相似文献   
10.
《无线电工程》2019,(3):244-248
针对现有室内固态功放体积大,馈线系统设计复杂的问题,提出了一种新型结构形式的高功率、高效率和小体积固态功率放大器。给出了高密度、大功率径向合成的原理及设计方法,对径向合成网络进行了建模仿真,通过优化达到了功放设计所需的性能指标。基于8个功放模块和8路径向合成网络,设计了一种室外型固态功率放大器,在所需频段实现了大于800 W的输出功率,整机效率高于40%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号