首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   807篇
  免费   160篇
  国内免费   59篇
工业技术   1026篇
  2024年   2篇
  2023年   28篇
  2022年   10篇
  2021年   35篇
  2020年   42篇
  2019年   42篇
  2018年   40篇
  2017年   76篇
  2016年   62篇
  2015年   42篇
  2014年   65篇
  2013年   75篇
  2012年   77篇
  2011年   83篇
  2010年   69篇
  2009年   70篇
  2008年   73篇
  2007年   46篇
  2006年   38篇
  2005年   20篇
  2004年   13篇
  2003年   10篇
  2002年   4篇
  2001年   1篇
  1998年   1篇
  1997年   2篇
排序方式: 共有1026条查询结果,搜索用时 62 毫秒
1.
《Ceramics International》2021,47(19):27487-27495
ZnO nanorod arrays (NRs) with a large number of sharp tips and uniform shapes were grown on the carbon cloth (CC) by a simple hydrothermal method. Titanium nitride (TiN) nanoparticles with various thicknesses were deposited on the ZnO NRs by magnetron sputtering to obtain ZnO/TiN core-shell arrays. Field emission (FE) performance of ZnO NRs show close dependence on TiN coating thickness. The turn-on field first decreases and then increases with increasing TiN coating thickness from 60 nm to 300 nm. The arrays with a design architecture can strike a balance between increased emission sites and limited field shielding effects. ZnO/TiN240 core-shell NRs have the lower turn-on electric field at 0.79 V/μm and the higher current densities at 9.39 mA/cm2. The field enhancement factor (β) of ZnO/TiN240 is about 3.2 times that of the bare ZnO NRs. On the other hand, the electrochemical properties were improved due to the formation of core-shell heterojunction on the ZnO/TiN interface and porous structure, which makes the ion and charge transport more convenient. Hence, this work not only revealed that the ZnO/TiN core-shell structure exhibited excellent improvement in both FE and supercapacitors applications, but also that growing arrays on CC was expected to achieve flexible display.  相似文献   
2.
Hydrothermally prepared zinc oxide nanorods are sulphonated (S–ZnO NR) and incorporated into 15% Sulphonated Poly (1,4-Phenylene Ether Ether Sulfone) (SPEES) to improve the hydrophilicity, water uptake and ion transfer capacity. Water uptake and ion transfer capacity increased to 34.6 ± 0.6% and 2.0 ± 0.05 meq g?1 from 29.8 ± 0.3% and 1.4 ± 0.04 meq g?1 by adding 7.5 wt% S–ZnO NR to SPEES. Morphological studies show the prepared S–ZnO NR is well dispersed in the polymer matrix. SPEES +7.5 wt% S–ZnO NR membrane exhibits optimum performance after three-weeks of continual operation in a fabricated microbial fuel cell (MFC) to produce a maximum power density of 142 ± 1.2 mW m?2 with a reduced biofilm compared to plain SPEES (59 ± 0.8 mW m?2), unsulphonated filler incorporated SPEES (SPEES + 7.5 wt% ZnO, 68 ± 1.1 mW m?2) and Nafion (130 ± 1.5 mW m?2) thereby suggesting its suitability as a sustainable and improved cation exchange membrane (CEM) for MFCs.  相似文献   
3.
The stretchable electrodes with excellent flexibility, electrical conductivity, and mechanical durability are the most fundamental components in the emerging and exciting field of flexible electronics. This article proposes a method for fabrication of such a stretchable electrode by embedding silver nanorods (AgNRs) into a polydimethylsiloxane (PDMS) matrix that is grown by a unique glancing angle deposition technique. The surface, mechanical, and electrical properties of PDMS are significantly changed after embedding the AgNRs in it. The results show that surface roughness and polarity increase after AgNRs are embedded in the PDMS matrix. Elastic modulus (E) and hardness (H) decrease with an increase in the indentation load as a result of the indentation depth effect. Due to strong interfacial adhesion of AgNRs embedded in the PDMS matrix, the E and H of nanocomposite are increased by 167.6 and 93.3% compared with PDMS film, respectively. Furthermore, the AgNRs-PDMS film has an electrical resistivity value in the order of 10−7 Ωm. It remains conductive during various mechanical strains such as bending, twisting, and stretching, which is demonstrated using a light-emitting diode circuit. Simultaneously, the antimicrobial activity of silver could make it a promising candidate for wearable electronics.  相似文献   
4.
In this work, we synthesized Se doped MoS2@Ni3S2 with nanosheets coated nanorods structure supported on Ni foam (MoNiSeS). Firstly, MoS2@Ni3S2 (MoNiS) nanorods was synthesized by hydrothermal method. After selenization treatment, MoSe2 successfully formed on the edge of MoS2 nanosheets and particle Ni3S2 transformed into NiSe, in which MoSe2 and NiSe acted as new phase in MoNiSeS. The obtained MoNiSeS only needs a low overpotential of 68 mV to reach the current density of 10 mA cm?2, and has a low Tafel plots of 72.77 mV dec?1 and good electrochemical durability, whose electrochemical activity is much better than that of MoNiS and NiSeS, implying the introduction of Mo and Se is beneficial to improve the electrocatalytic performance of NiS for HER. In addition, the proper amount of Mo source, which has an effect on the morphology of product, has also been investigated. For MoNiSeS, the typical nanosheets coated nanarods expose more active sites and the synergic effects is good to the improvement of the catalytic activity. Meanwhile, WNiSeS has also been prepared using the same method and the corresponding results show that the electrochemical activity of WNiSeS is much better than that of NiSeS, proving the universality of this strategy.  相似文献   
5.
本实验采用两步水热法在钽基体表面制备出掺杂Cu2+的Ta2O5纳米棒薄膜。采用XRD、SEM、XPS等方法分析了材料的物相和表面微观结构。用ICP检测了样品在生理盐水中离子析出浓度,最后通过平板计数法检验了不同含量铜掺杂Ta2O5薄膜的抗菌能力。结果表明,通过两步水热处理,在钽表面生成了简单斜方晶体结构的Ta2O5纳米棒阵列,Cu2+的掺杂不会对纳米棒薄膜的微观形貌和物相造成显著影响。随时间的增加,掺铜薄膜的铜离子析出速率逐渐趋于平缓。平板计数法表明,Cu2+ 的掺杂量达到2.68At%时,铜掺杂Ta2O5纳米棒薄膜的抗菌性能最好,抗菌率达99.2%。  相似文献   
6.
《Ceramics International》2022,48(13):18238-18245
Zinc oxide nanorods, ZnO NRs, were synthesized on a clean glass and coated with graphene oxide (GO) using spray coating method to enhance the photocatalytic activity in wastewater treatment. The ZnO NRs were synthesized using the solution process synthesis that was optimized using Taguchi method. Several synthesis parameters have been optimized and studied to determine the best synthesis parameter to grow ZnO NRs for the photodegradation of organic contaminants. Field emission scanning electron microscopy (FESEM) with EDX, X-ray diffraction (XRD), Raman, ultraviolet visible near-infrared (UV-VIS-NIR), and photoluminescence (PL) spectroscopies were used to investigate the structural and optical properties of the produced nanorods. FESEM images revealed the vertical growth of ZnO NRs as well as layers of GO covering the ZnO NRs' top surface. The Raman study demonstrates the combination peak of GO and ZnO, hence proving the GO layer's successful coating. After the GO coating, decrease in the bandgap of the synthesized photocatalyst was detected by PL and UV–Vis absorption measurements. Under UVC exposure with treatment time of 6 h, the degradation of MB with ZnO NRs/GO photocatalyst reached a degradation percentage of 97.86%, which is greater than the degradation percentage achieved using pristine ZnO NRs, which is 93.28%. The results validated that the coating of GO enhances the photocatalytic activity of the host material, ZnO NRs.  相似文献   
7.
This study demonstrates the structural properties and evaluates the electrocatalytic activity of an ethanol oxidation reaction using ternary materials composed by Pd and Sn nanoparticles combined with CeO2 nanorods (NR) anchored on Vulcan carbon black to be used as an anode in alkaline direct ethanol fuel cells (ADEFCs). The highest open circuit voltage (1010 mV), maximum power (30 mW cm−2) and current densities (113 mA cm−2) were achieved using (Pd1Sn3)10(CeO2 NR)20(Vn)70, while the commercial anode values were 968 mV, 23 mW cm−2 and 123 mA cm−2. Although similar performance for both anodes was observed, the ternary hybrid electrocatalyst contains an 8-fold lower Pd content than the commercial material. This outcome may be justified by the higher defect density presented by the carbon support observed by Raman spectroscopy and the metal oxidation state modifications detected by X-ray photoelectron spectroscopy, as well as the electrochemically active surface area presented by the ternary electrocatalyst. The combination of higher vacancies, defects and oxygenated species in the carbon support and the synergistic effect between the oxyphilic Sn and CeO2 NR species and the Pd nanoparticles results in an electrochemical performance that makes these ternary electrocatalysts promising anode materials for ADEFC applications.  相似文献   
8.
为了研究载体性质对Ru负载型催化剂的CO2加氢合成甲酸反应性能的影响,制备了以Al2O3纳米棒和γ-Al2O3为载体的一系列Ru基催化剂,采用透射电镜(TEM)、X射线衍射(XRD)、D2/OH交换和程序升温还原(H2-TPR)等方法详细表征催化剂的性质,并考察CO2加氢制甲酸的反应性能。结果表明:与传统Ru/Al2O3催化剂相比,以Al2O3纳米棒为载体时,Ru Ox物种在载体表面的分散程度高,Al2O3纳米棒的表面OH数目多,有利于提高催化剂的反应活性,另外当Ru在Al2O3纳米棒上的负载量(质量分数)为1%时,甲酸产量最高可以达到11.7mmol/h。  相似文献   
9.
TeO2-nanostructured sensors are seldom reported compared to other metal oxide semiconductor materials such as ZnO, In2O3, TiO2, Ga2O3, etc. TeO2/CuO core-shell nanorods were fabricated by thermal evaporation of Te powder followed by sputter deposition of CuO. Scanning electron microscopy and X-ray diffraction showed that each nanorod consisted of a single crystal TeO2 core and a polycrystalline CuO shell with a thickness of approximately 7 nm. The TeO2/CuO core-shell one-dimensional (1D) nanostructures exhibited a bamboo leaf-like morphology. The core-shell nanorods were 100 to 300 nm in diameter and up to 30 μm in length. The multiple networked TeO2/CuO core-shell nanorod sensor showed responses of 142% to 425% to 0.5- to 10-ppm NO2 at 150°C. These responses were stronger than or comparable to those of many other metal oxide nanostructures, suggesting that TeO2 is also a promising sensor material. The responses of the core-shell nanorods were 1.2 to 2.1 times higher than those of pristine TeO2 nanorods over the same NO2 concentration range. The underlying mechanism for the enhanced NO2 sensing properties of the core-shell nanorod sensor can be explained by the potential barrier-controlled carrier transport mechanism.

PACS

61.46. + w; 07.07.Df; 73.22.-f  相似文献   
10.
首先采用水热法制备 TiO2纳米棒光阳极,并引入 Au@SiO2纳米颗粒对其性能进行改善。结果表明,Au@SiO2纳米颗粒的引入虽然增强了光吸收,但同时减少了染料在 TiO2纳米棒上的吸附量,反而导致了电池器件性能的下降。因此,在 TiO2纳米棒/Au@SiO2纳米颗粒结构上进一步生长一层 TiO2钝化层:一方面可增加染料吸附量;另一方面有利于减少电荷复合。基于这种光阳极组装的染料敏化太阳能电池获得了 2.34%的光电转换效率,较单一 TiO2纳米棒光阳极组装的电池效率提高了 60%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号