首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   807篇
  免费   161篇
  国内免费   59篇
工业技术   1027篇
  2024年   2篇
  2023年   28篇
  2022年   10篇
  2021年   35篇
  2020年   42篇
  2019年   42篇
  2018年   40篇
  2017年   76篇
  2016年   62篇
  2015年   42篇
  2014年   65篇
  2013年   75篇
  2012年   77篇
  2011年   83篇
  2010年   69篇
  2009年   70篇
  2008年   73篇
  2007年   46篇
  2006年   38篇
  2005年   20篇
  2004年   13篇
  2003年   10篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   2篇
排序方式: 共有1027条查询结果,搜索用时 15 毫秒
61.
在无催化剂条件下,采用热蒸发Zn源,以N2为载气体,在SiO2衬底上反应沉积制备出单晶氧化锌纳米棒。XRD研究表明纳米棒为结晶完好的纤锌矿结构,并且为非定向生长,非定向生长的氧化锌纳米棒减弱了棒之间的屏蔽效应,表现出较好的场发射效果,为未来场发射电子器件的实际应用提供了可靠依据。  相似文献   
62.
Without using any templates or surfactants, hierarchical ZnS‐In2S3‐CuS nanospheres with nanoporous structure are successfully synthesized via a simple and convenient process. The nanospheres are aggregations of densely packed nanoparticles and nanorods. Different to the oriented attachment (OA) mechanism reported in the literature, the formation of these nanorods is believed to follow a lateral OA mechanism (nanoparticles attach along the direction perpendicular to the crystallographic axes with lateral planes as the juncture) based on the experimental data. This process could be a general phenomenon and would provide a new insight into the OA mechanism. A detailed time‐resolved TEM kinetic study of the formation of the complex structure is shown. The dipole mechanism and electric field‐induced growth are found to be responsible for the final architecture. Photocatalytic activities for water splitting are investigated under visible‐light irradiation (λ > 400 nm) and an especially high photocatalytic activity (apparent yield of 22.6% at 420 nm) is achieved by unloaded ZnIn0.25Cu0.02S1.395 prepared at 180 °C for 18 h because of their high crystallinity, large pore volume, and the presence of nanorods with special microstructures.  相似文献   
63.
研究水热合成氧化锌纳米棒的高温热稳定性。采用X射线衍射和扫描电镜对氧化锌纳米棒的结构与形貌进行表征。采用热重分析研究氧化锌纳米棒在热处理过程中的失重情况。结果表明:在退火温度低于400°C时,氧化锌纳米棒具有较好的热稳定性。当退火温度超过600°C时,氧化锌纳米棒的长径比明显降低并且纳米棒的团聚趋势加剧。退火处理对氧化锌纳米棒的气敏性能具有显著影响。与未经退火处理的氧化锌纳米棒相比,经历400°C退火处理的氧化锌纳米棒对浓度为25×10-6的H2灵敏度可以从2.22提高至3.56。经历400°C热退火处理的氧化锌纳米棒对H2表现出最优的气敏性能。  相似文献   
64.
In this paper we report the zinc oxide nanorods (ZnO NRs) growth by electrochemical deposition onto polycrystalline gold electrodes modified with assemblies of polystyrene sphere monolayers (PSSMs). Growth occurs through the interstitial spaces between the hexagonally close packed spheres. ZnO NRs nucleate in the region where three adjacent spheres leave a space, being able to grow and projected over the PSSMs. The nanorod surface density (NNR) shows a linear dependence with respect to a PS sphere diameter selected. XRD analysis shows these ZnO NRs are highly oriented along the (0 0 2) plane (c-axis). This open the possibility to have electronic devices with mechanically supported nanometric materials.  相似文献   
65.
The selection of carrier transporting layer in polymer solar cells is an important issue because the nature and direction of carrier transport can be manipulated by inserting different functional layers in the device structure. In this work, we report a very efficient inverted polymer solar cell (PSC) system based on regioregular poly(3-hexylthiophene) and a n-type acceptor, bis-indene[C60]. With a pair of metal oxides and the insertion of TiO2 nanorods electron collecting layer between the ZnO thin film and the active layer, the device efficiency can be greatly improved. The contact area between the active layer and the electron collecting layer, as well as the thickness of active layer, can be increased with the incorporation of TiO2 nanorods. As a result, photocurrent can be enhanced due to more absorption of light and more charge separation interface. In addition, the larger contact area and the crystalline TiO2 nanorods provide a more efficient transporting route for the carriers to the cathode. The most efficient device demonstrated shows a high power conversion efficiency of 5.6% with the inverted structure.  相似文献   
66.
67.
The dispersion of magnetic nanorods in poly(2‐vinylpyridine) (PVP) as a function of rod length, particle loading and molecular weight of PVP was investigated. The nanorods were organized into small spherical clusters at low particle loading. Further increasing the particle concentration caused an increase in the size of the aggregates. Additionally, the internal structure of the nanorods developed into a raft‐like structure, forming rectangular clusters. The incorporation of longer nanorods in the PVP amplified the magnetic interaction energy, which created conditions to induce extensive aggregation. The entanglement of the polymer also played an important role in the arrangement of the nanorods. This behavior could be categorized into two regimes, MPVP > Me and MPVP < Me, where MPVP and Me are the number‐average molecular weight and entanglement molecular weight of PVP, respectively: for MPVP > Me, PVP formed entanglements that prevented nanorods from extensive aggregation; for MPVP < Me, PVP could not form entanglements, and nanorods could move freely in the PVP, and thus significant rod aggregation occurred. Simple calculations to assess the contribution of the magnetic interaction, the van der Waals interaction and the free energy of mixing of the system to the arrangement of magnetic nanorods in the homopolymer are discussed. © 2013 Society of Chemical Industry  相似文献   
68.
水浴法制备形貌可控的一维ZnO纳米和微米棒   总被引:3,自引:2,他引:1  
用一步或两步简单的化学溶液法,以醋酸锌为原料,六亚甲基四胺或三乙醇胺为催化剂在玻璃衬底上生长出不同形貌的纳米和微米ZnO棒.探讨了反应液的酸碱度和反应液浓度对生成的ZnO棒形貌的影响,并分析了其生长机制.随着溶液浓度的增加,棒的长度与直径比减小,同时玻璃衬底上生长的ZnO棒从无序分布趋于垂直于衬底平行取向分布.随着pH值的改变,棒的形状由在弱酸性溶液中的细长棒状变为在弱碱性溶液中的圆头对称短棒;当碱性增大到一定程度时,可以生成颗粒状.通过控制一定的酸碱度和溶液浓度,可以得到规则的六角ZnO棒状阵列.测量了样品的XRD和扫描电镜像,并对其发光性能进行了测量分析.其中规则有序六角棒的发光光谱表明峰值在530nm,半高宽为220nm,可能是Vo 的电子和价带中的空穴辐射复合所致.  相似文献   
69.
In this paper, we will present our recent research on the growth and characterization of some Si-based heterostructures for optical and photonic devices. The heterostructures to be discussed are ZnO nanorods on Si, SiO2, and other substrates such as SiN and sapphire. We will also consider strained Si1−xGex/Si heterostructures for Si optoelectronics. The performance and functionality extension of Si technology for photonic applications due to the development of such heterostructures will be presented. We will focus on the results of structural and optical characterization in relation to device properties. The structural characterization includes x-ray diffraction for assessment of the crystallinity and stress in the films and secondary ion mass spectrometry for chemical analysis. The optical properties and electronic structure were investigated by using photoluminescence. The device application of these thin film structures includes detectors, lasers, and light emitting devices. Some of the Si-based heterostructures to be presented include devices emitting and detecting up to the blue-green and violet wave lengths.  相似文献   
70.
TeO2-nanostructured sensors are seldom reported compared to other metal oxide semiconductor materials such as ZnO, In2O3, TiO2, Ga2O3, etc. TeO2/CuO core-shell nanorods were fabricated by thermal evaporation of Te powder followed by sputter deposition of CuO. Scanning electron microscopy and X-ray diffraction showed that each nanorod consisted of a single crystal TeO2 core and a polycrystalline CuO shell with a thickness of approximately 7 nm. The TeO2/CuO core-shell one-dimensional (1D) nanostructures exhibited a bamboo leaf-like morphology. The core-shell nanorods were 100 to 300 nm in diameter and up to 30 μm in length. The multiple networked TeO2/CuO core-shell nanorod sensor showed responses of 142% to 425% to 0.5- to 10-ppm NO2 at 150°C. These responses were stronger than or comparable to those of many other metal oxide nanostructures, suggesting that TeO2 is also a promising sensor material. The responses of the core-shell nanorods were 1.2 to 2.1 times higher than those of pristine TeO2 nanorods over the same NO2 concentration range. The underlying mechanism for the enhanced NO2 sensing properties of the core-shell nanorod sensor can be explained by the potential barrier-controlled carrier transport mechanism.

PACS

61.46. + w; 07.07.Df; 73.22.-f  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号