首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11364篇
  免费   834篇
  国内免费   489篇
工业技术   12687篇
  2024年   86篇
  2023年   266篇
  2022年   308篇
  2021年   449篇
  2020年   407篇
  2019年   415篇
  2018年   398篇
  2017年   486篇
  2016年   422篇
  2015年   345篇
  2014年   556篇
  2013年   626篇
  2012年   709篇
  2011年   786篇
  2010年   546篇
  2009年   730篇
  2008年   510篇
  2007年   678篇
  2006年   665篇
  2005年   487篇
  2004年   473篇
  2003年   365篇
  2002年   339篇
  2001年   276篇
  2000年   242篇
  1999年   201篇
  1998年   163篇
  1997年   113篇
  1996年   116篇
  1995年   87篇
  1994年   75篇
  1993年   77篇
  1992年   88篇
  1991年   62篇
  1990年   50篇
  1989年   45篇
  1988年   12篇
  1987年   8篇
  1986年   7篇
  1985年   3篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1980年   4篇
  1962年   1篇
  1959年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
A technology for cyclic generation of hydrogen and oxygen using electrodes made of variable valency material that does not need the use of separating ion-exchange membranes is presented. The technological solution enables to fabricate electrolyzers for uninterrupted producing high-pressure hydrogen with reduced energy intensity of the production. The total work for compressing 1 m3 of hydrogen and 0.5 m3 of oxygen has been estimated. Results of investigation of influence of discrete supply of DC current to the electrolysis cell, in order to improve the processes of gas evolution and to simplify the power systems of the electrolysis plant, have been considered. There is also considered an electrolysis installation equipped with a thermosorption compressor in which LaNi5 is used as a hydride-forming compound. The comparative characteristics of the developed electrolyzer and the currently used hydrogen generators are given.  相似文献   
2.
The effective and efficient utilization of low-calorific value (LCV) gases has gained increasing attention in scientific research and industrial fields. In this study, the combustion characteristics of three LCV gases in practical devices are analyzed by using a nonadiabatic perfectly stirred reactor model. The complete steady-state solution in the temperature-residence time parameter space is obtained with arc-length continuation. The stable operation region is quantified by the eigenvalue analysis. The transition of solution curves is quantified with heat loss coefficient. Five key system parameters are systematically investigated on their effects on stability limits. With the combustion performance being quantified by a combustion state index, a combustion state regulation method is proposed to find the optimal regulation path of system parameters. Active subspace method is further applied to shorten the regulation step by identifying the active direction. The proposed method and findings are useful for optimal regulation of burning LCV gases in industrial burners.  相似文献   
3.
Engineering simulations have opened several gates for today’s chemical engineers. They are powerful tools to provide technical content as physics-based numerical solvers. Augmented reality (AR) and virtual reality (VR), on the other hand, are already underway to digitize environments in many fields. The combination of AR/VR environments and simulations in engineering education has been attracting widespread interest. Literature has demonstrated a massive amount of digital educational environments in several contexts as being complementary to conventional educational methods. Nevertheless, hosting technical content produced by engineering simulations with educational AR/VR is still challenging and requires expertise from multiple disciplines throughout the technical development. Present work provides a facile and agile methodology for low-cost hardware but content-wise rich AR software development. Inspired by the Covid-19 pandemic, a case study is developed to teach chemical-engineering concepts using a liquid-soap synthesis process. Accordingly, we assess and conclude the digital development process to guide inexperienced developers for the digitalization of teaching content. The present contribution serves as an example of the power of integrating AR/VR with traditional engineering simulations for educational purposes. The digital tool developed in this work is shared in the online version.  相似文献   
4.
Smartphones are a promising tool as student response systems (SRS) for interactive teaching due to their widespread diffusion. Here, the main purpose is to assess the efficacy of smartphone-based SRS in large classroom settings of undergraduate Thermodynamics, as representative of engineering courses requiring high-level cognitive skills for problem solving. Four sets of multiple-choice questions were presented during the course. Overall, the results refer to 1055 students between control and SRS classes, each corresponding to a3 years period.One of the main results of this work is the strong linear correlation between the average questionnaire score and the final exam grade (R2 = 0.91). A similar correlation, although with a lower value of R2, is already found in the first questionnaire, thus showing the SRS high predictive power of class performance. The results of this study provide guidance for a quantitative use of smartphone-based SRS in teaching basic disciplines. The SRS monitoring capability allows early detection of struggling students, thus paving the way to personalized tutoring and improved student engagement in active learning practices. This approach is especially important in emergency situations, such as the SARS-Cov-2 pandemic, when distance learning is widely adopted, and remote interactive tools are highly needed.  相似文献   
5.
Recently, thermal interface materials (TIMs) are in great demands for modern electronics. For mechanically mixed polymer composite TIMs, the thermal conductivity and the mechanical properties are generally lower than expected values due to the sharply increased viscosity and poor filler dispersion. This work shows that addition of a small amount of polyester-based hyperbranched polymer (HBP) avoided the trade-off in mechanically mixed ABS/hexagonal boron nitride (h-BN) composites. After adding 0.5 wt% HBP, the maximum h-BN content in the composites increased from 50 to 60 wt%. The out-of-plane, in-plane thermal conductivity, and tensile strength of ABS/h-BN with 50 wt% h-BN were 0.408, 0.517 W/mK, and 18 MPa, respectively, and were increased to 0.729, 0.847 W/mK, and 32 MPa by adding 0.5 wt% HBP, while 0.972, 1.12 W/mK, and 29.5 MPa were achieved for ABS/h-BN/HBP with 60 wt% h-BN. The morphological and rheological results proved that these enhancements are due to the improved h-BN dispersion by decreasing viscosity of composites during mixing. Theoretical modeling based on the modified effective medium theory confirmed such results and showed that the interfacial thermal resistance also decreased slightly. Thus, this work demonstrates a facile and scalable method for simultaneously improving the thermal conductivity and mechanical properties of thermoplastic-based TIMs.  相似文献   
6.
This study presents systematic packaging design tools integrating functional and environmental consequences on product life cycle. To design packaging for sustainability, the trade-offs between functional and environmental aspects of packaging throughout the product life cycle should be considered. However, it is difficult for packaging designers to understand the overall trade-offs because the extent of the design consequences on the entire life cycle of packaging and its contents is unclear. We developed two tools for packaging design: the Life Cycle Association Matrix (LCAM) and the Function Network Diagram (FND). The following three steps, based on literature reviews and interviews with industrial experts, were applied. Firstly, we listed the product functions and design variables related to the functions as the attributes allocated to the product life cycle. Secondly, the attributes were connected appropriately based on causal relationships. Lastly, we identified the factors to support decision making in the packaging design procedure. As a result, the LCAM depicts the design consequences on the life cycle, and the FND determines the stakeholders affected by the design consequences. Two case studies were demonstrated to analyze the trade-offs by using our tools. In the case studies, a liquid laundry detergent bottle and a milk carton were redesigned. The tools identified the design consequences and stakeholders affected by the redesign of the usability and protective function for the detergent and milk cases, respectively. The results showed the significance of understanding the design consequences on the product life cycle by integrating the functional and environmental aspects.  相似文献   
7.
Cobalt-incorporated MCM-41(Co-MCM-41) was used as a heterogeneous catalyst for the ozonation of para-chlorobenzoic acid (p-CBA) in aqueous solution. Cobalt oxide supported on MCM-41(Co/MCM-41) was synthesized for comparison. Their textural properties were elucidated by various characterization techniques to understand the relationship between surface texture and catalytic activity. TOC removal at 60 min reached 91% with Co-MCM-41, 83% with Co/MCM-41 and only 52% with ozone alone, respectively. Observations from diffuse reflection spectroscopy demonstrated that different metal phases were formed in these cobalt-modified molecular sieves samples. Radical scavenger experiments indicated the formation of hydroxyl radicals that were responsible for the effective degradation of p-CBA. An integrated approach to the catalytic mechanism was proposed by considering the variation of pH in the course of ozonation as well as its subsequent influence on the dissociation of targeted compounds and surface charge of the catalyst. In the reusability experiments, the reused Co-MCM-41 was able to regain the same catalytic capability as the fresh one within 5 cycles. X-ray photoelectron spectroscopy results indicated that a part of Co2+ was oxidized to Co3+ after oxidation reaction.  相似文献   
8.
In this study, the cellulose nanoparticles (CNP) isolated from potato peel were used for reinforcement of polyvinyl alcohol (PVA)-based active packaging film. The above film was used to pack the raw prawns (Penaeus monodon) at −20 °C, and the colour change, protein content, TVB-N, TMA and microbial analysis were done at regular interval for prawns stored in CNP-PVA active packaging film. A significant difference was observed in the quality of prawns stored in potato CNP-PVA film compared with prawns packed and stored in polyethylene film. The newly designed active packaging with CNP and fennel seed oil enhanced the shelf life of prawns up to two months for both HOSO (head on shell on) prawn and PD (peeled and deveined) prawn. Hence, the study recommends the potato peel CNP-PVA film with fennel seed oil as better choice to extend the shelf life of the prawns during storage compared with polyethylene packaging.  相似文献   
9.
目的 以气调包装酱卤鸭肉制品为研究对象,在冷链温度范围内建立一套准确、高效的货架期预测模型。方法 利用选择性培养基测定不同温度下产品各微生物数量,确定4~25℃条件下产品优势腐败菌。对乳酸菌数量与感官评定值进行了回归分析确定最小腐败量Ns。分别采用修正的Gompertz方程和平方根方程建立一、二级模型,并通过预测值与实测值对比验证模型的可靠性。结果 确定了4~25℃条件下产品优势腐败菌为乳酸菌,最小腐败量Ns=6.14(lg(cfu /g))。一、二级模型拟合度均良好,三种温度下模型预测值与实际值间的差异均在30%左右,波动幅度在10%以内。结论 实现了对4~25℃内任何时间点产品剩余货架期的预测,为冷链条件下气调包装酱卤鸭肉制品品质的变化提供了理论指导。  相似文献   
10.
The aim of this study is to investigate the synergistic effects of modified TiO2/multifunctionalized graphene oxide nanosheets at different ratios on the interface compatibility between starch and poly(lactic acid) (PLA). To this end, silanylated nano-TiO2 (MTiO2, 1 and 2%) and alkylated maleic anhydride grafted graphene oxide (f-GO, 0.1, 0.2, and 0.4%) at different combinations are blended with the PLA-starch composites using solution blending technique. Then, the synergistic effects of MTiO2 and f-GO on PLA/starch matrix are investigated in terms of the morphology, crystallinity, structural characterization, thermal stability, dynamic mechanical, and antiaging properties, and the related mechanisms. The Raman and Fourier transform infrared spectroscopy spectra verify the successful synthesis of the two modified nanofillers (f-GO and MTiO2) and the formation of strong hydrogen bond within the PLA-starch nanocomposites. Due to the strong interfacial interaction and the synergistic effect from the combination of 1% MTiO2 and 0.2% f-GO, obvious improvement was observed in PLA-starch versus other nanocomposites in terms of morphology, thermal stability, surface hydrophobicity, storage modulus, ultraviolet-shielding capacity, and aging-resistance. Furthermore, differential scanning calorimeter (DSC), isothermal crystallization kinetic, and X-ray diffraction analysis demonstrate that f-GO and the M-TiO2 significantly synergize in enhancing the crystallization rate and crystallinity of PLA/starch matrix. These results provide novel insights for constructing high-performance nanocomposites and facilitate their applications in food packaging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号