首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19742篇
  免费   1759篇
  国内免费   540篇
工业技术   22041篇
  2024年   44篇
  2023年   215篇
  2022年   425篇
  2021年   538篇
  2020年   502篇
  2019年   417篇
  2018年   366篇
  2017年   507篇
  2016年   538篇
  2015年   626篇
  2014年   1202篇
  2013年   1265篇
  2012年   1563篇
  2011年   1513篇
  2010年   1113篇
  2009年   1066篇
  2008年   912篇
  2007年   1170篇
  2006年   1092篇
  2005年   977篇
  2004年   859篇
  2003年   813篇
  2002年   652篇
  2001年   617篇
  2000年   512篇
  1999年   456篇
  1998年   353篇
  1997年   425篇
  1996年   249篇
  1995年   216篇
  1994年   178篇
  1993年   116篇
  1992年   111篇
  1991年   87篇
  1990年   76篇
  1989年   65篇
  1988年   53篇
  1987年   40篇
  1986年   19篇
  1985年   19篇
  1984年   20篇
  1983年   2篇
  1982年   9篇
  1981年   3篇
  1980年   19篇
  1979年   7篇
  1975年   1篇
  1974年   1篇
  1963年   1篇
  1951年   10篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Reliable prediction of flooding conditions is needed for sizing and operating packed extraction columns. Due to the complex interplay of physicochemical properties, operational parameters and the packing-specific properties, it is challenging to develop accurate semi-empirical or rigorous models with a high validity range. State of the art models may therefore fail to predict flooding accurately. To overcome this problem, a data-driven model based on Gaussian processes is developed to predict flooding for packed liquid-liquid and high-pressure extraction columns. The optimized Gaussian process for the liquid-liquid extraction column results in an average absolute relative error (AARE) of 15.23 %, whereas the algorithm for the high-pressure extraction column results in an AARE of 13.68 %. Both algorithms can predict flooding curves for different packing geometries and chemical systems precisely.  相似文献   
2.
3.
Current ammonia production technologies have a significant carbon footprint. In this study, we present a process synthesis and global optimization framework to discover the efficient utilization of renewable resources in ammonia production. Competing technologies are incorporated in a process superstructure where biomass, wind, and solar routes are compared with the natural gas-based reference case. A deterministic global optimization-based branch-and-bound algorithm is used to solve the resulting large-scale nonconvex mixed-integer nonlinear programming problem (MINLP). Case studies for Texas, California, and Iowa are conducted to examine the effects of different feedstock prices and availabilities. Results indicate that profitability of ammonia production is highly sensitive to feedstock and electricity prices, as well as greenhouse gas (GHG) restrictions. Under strict 75% GHG reductions, biomass to ammonia route is found to be competitive with natural gas route, whereas wind and solar to ammonia routes require further improvement to compete with those two routes. © 2018 American Institute of Chemical Engineers AIChE J, 65: e16498 2019  相似文献   
4.
The separation of azeotropes has substantial energy and investment costs, and the available methods require high capital costs for reconstruction of process plants. As an alternative, a semicontinuous configuration that utilizes an existing plant with minor modifications has been explored. In this paper, a semicontinuous, heterogeneous azeotropic distillation process is proposed and acetic acid dehydration process is used as a case study. To carry out the simulation work, Aspen HYSYS® simulation software is used along with MATLAB® and an interface program to handle the mode-transition of the semicontinuous process. Sensitivity analyses on operating parameters are performed to identify the process limits. Comparisons are made to conventional heterogeneous azeotropic distillation, and dividing-wall distillation column on the annual cost. The results proved that the semicontinuous system is the best setup in terms of total annual costs and energy requirements.  相似文献   
5.
In this paper, the dynamic behaviors on the basis of simulation for high-purity heat integrated air separation column (HIASC) are studied. A nonlinear generic model control (GMC) scheme is proposed based on the nonlinear behavior analyses of a HIASC process, and an adaptive generic model control (AGMC) scheme is further presented to correct the model parameters online. Related internal model control (IMC) scheme and multi-loop PID (M-PID) scheme are also developed as the comparative base. The comparative researches are carried out among these linear and nonlinear control schemes in detail. The simulation research results show that the proposed AGMC schemes present advantages in both servo control and regulatory control for the high-purity HIASC.  相似文献   
6.
A simple, cost-effective, and novel chemical sensor for ammonia (NH3) gas detection was developed from polyaniline (PANI)/quail eggshell (QES) composites. QES is a natural waste enriched in calcium carbonate. In this work, pure PANI was synthesized from chemical oxidation method and PANI/QES composites were prepared from physical mixing of QES with the synthesized PANI at different mass ratio. A series of complementary techniques including Fourier transform infrared and ultraviolet-visible spectrometers, scanning electron microscope with energy dispersive detection coupled with mapping, thermogravimetric analysis, and X-ray diffractometer were used to characterize the physicochemical and textural properties of the biocomposites. From the results, PANI/QES composite with a mass ratio of 1 exhibited the lowest NH3 detection limit of 5.24 ppm with a linear correlation coefficient (R2) of close to unity (0.9932) between the signal and NH3 gas concentration. As a whole, the PANI/QES biocomposites synthesized from this work exhibited excellent selectivity toward NH3 gas even in the presence of other gas impurities, such as acetone, ethanol, and hexane. For the sensor reusability, the PANI/QES biocomposites can be reused in the application of NH3 gas detection for at least 4 cycles.  相似文献   
7.
There are many potential causes of corrosion in animal buildings. Animals exhale large quantities of moisture into the air creating high relative humidity in the building if the moisture is not properly vented. High humidity increases the potential for condensation. In addition, ammonia may be found in large quantities in animal buildings. Ammonia is released from manure and urine. In addition, ammonium chloride is used as a nitrogen source in fertilisers. In this study, the atmospheric corrosion of hot-dip-galvanised steel and zinc alloy-coated steel such as zinc–aluminium and zinc–aluminium–magnesium has been studied in atmospheres containing different levels of ammonia. Investigations have also been conducted at different levels of ammonium chloride. The results are discussed in view of the mechanisms of corrosion of zinc and zinc alloy-coated steel in ammonia and ammonium chloride-containing environments.  相似文献   
8.
9.
The design of an efficient non-noble metal catalyst is of burgeoning interest for ammonia synthesis. Herein, we report a Mo2C/CeO2 catalyst that is superior in ammonia synthesis activity. In this catalyst, molybdenum carbide coexisted with the ceria overlayers which is from the ceria support as the strong metal–support interaction. There is a high proportion of low-valent Mo species, as well as high concentration of Ce3+ and surface oxygen species. The presence of Mo2C and CeO2 overlayers not only leads to enhancement of hydrogen and nitrogen adsorption, but also facilitates the desorption and exchange of adsorbed species with the gaseous reagents. Compared with the Mo/CeO2 catalyst prepared without carbonization, the Mo2C/CeO2 catalyst is more than sevenfold higher in ammonia synthesis rate. This work not only presents an explicit example of designing Mo-based catalyst that is highly efficient for ammonia synthesis by tuning the adsorption and desorption properties of the reactant gases, but opens a perspective for other elements in ammonia synthesis.  相似文献   
10.
This work investigates the effect of the addition of small amounts of Ru (0.5‐1 wt%) to carbon supported Co (10 wt%) catalysts towards both NaBH4 and NH3BH3 hydrolysis for H2 production. In the sodium borohydride hydrolysis, the activity of Ru‐Co/carbon catalysts was sensibly higher than the sum of the activities of corresponding monometallic samples, whereas for the ammonia borane hydrolysis, the positive effect of Ru‐Co systems with regard to catalytic activity was less evident. The performances of Ru‐Co bimetallic catalysts correlated with the occurrence of an interaction between Ru and Co species resulting in the formation of smaller ruthenium and cobalt oxide particles with a more homogeneous dispersion on the carbon support. It was proposed that Ru°, formed during the reduction step of the Ru‐Co catalysts, favors the H2 activation, thus enhancing the reduction degree of the cobalt precursor and the number of Co nucleation centers. A subsequent reduction of cobalt and ruthenium species also occurs in the hydride reaction medium, and therefore the state of the catalyst before the catalytic experiment determines the state of the active phase formed in situ. The different relative reactivity of the Ru and Co active species towards the two investigated reactions accounted for the different behavior towards NaBH4 and NH3BH3 hydrolysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号