首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2365篇
  免费   519篇
  国内免费   967篇
地球科学   3851篇
  2024年   16篇
  2023年   36篇
  2022年   102篇
  2021年   119篇
  2020年   89篇
  2019年   123篇
  2018年   115篇
  2017年   132篇
  2016年   123篇
  2015年   130篇
  2014年   147篇
  2013年   182篇
  2012年   236篇
  2011年   159篇
  2010年   155篇
  2009年   178篇
  2008年   126篇
  2007年   164篇
  2006年   172篇
  2005年   165篇
  2004年   165篇
  2003年   108篇
  2002年   94篇
  2001年   105篇
  2000年   84篇
  1999年   85篇
  1998年   79篇
  1997年   101篇
  1996年   81篇
  1995年   51篇
  1994年   62篇
  1993年   35篇
  1992年   23篇
  1991年   28篇
  1990年   24篇
  1989年   11篇
  1988年   14篇
  1987年   14篇
  1986年   12篇
  1985年   2篇
  1984年   2篇
  1982年   1篇
  1980年   1篇
排序方式: 共有3851条查询结果,搜索用时 15 毫秒
1.
西秦岭温泉花岗岩体岩石学特征及岩浆混合标志   总被引:14,自引:5,他引:9  
温泉花岗岩体由酸性端元的寄主岩石和暗色微细粒镁铁质包体群及基性岩墙群组成。无岩浆混合作用或岩浆混合作用较弱区段,寄主岩石以似斑状二长花岗岩为主.显示正常的花岗岩结构构造岩浆混合作用强烈区段。岩石的异常结构构造十分发育.矿物之间自形程度差异显著.常见包晶反应、包含结构、交代边、熔蚀边、交代蚕食的港湾状结构构造及交代缝合线、矿物镶边、斜长石异常环带和矿物残留等,多见指示岩浆混合的标志性矿物针状磷灰石。暗色微粒包体中多见寄主二长花岗岩中的捕掳晶。包体的形态、结构构造以及与寄主岩石强烈地成分交换等均是岩浆混合作用的标志。  相似文献   
2.
A closed‐form deflection response of a beam rest is presented in this paper using the integral transform method. The theory of linear partial differential equations is used to represent the deflection of beam subjected to a moving harmonic line load in integration form. The solution is finally carried out using the inverse Fourier transform. To evaluate the integration analytically, poles of the integrand are identified with the help of algebraic equation theory. Residue theorem is then utilized to represent the integration as a contour integral in the complex plane. Closed‐form deflections and numerical results are provided for different combinations of load frequency and velocity. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
3.
The Waterman Metamorphic Complex of the central Mojave Desert was exposed as a consequence of early Miocene detachment-dominated extension. However, it has evidence consistent with a more extensive geological history that involves collision of a crustal fragment(s), tectonic thickening by overthrusting and two periods of extension. The metamorphic complex contains granitoid intrusives and felsic mylonitic gneisses as well as polymetamorphic rocks that include marble, calc-silicate, quartzite. mafic granulite, pyribolite, amphibolite, migmatite and biotite schist. The latter group of rocks was affected by an initial series of high-grade metamorphic events (M1 and M2) and a localized lower grade overprint (M3). The initial metamorphism (M1) can be separated into two stages along its high-grade P–T path: M1a, a granulite facies metamorphism at 800–850° C and 7.5–9 kbar and Mlb, an upper amphibolite facies overprint at 750–800° C and 10–12 kbar. M1a developed mineral assemblages and textures consistent with granulite facies conditions at a reduced activity of H2O and is associated with intense ductile deformation (D1) and minor local partial melting. M1b overprinted the granulite assemblages with a series of hydrous phases under conditions of increasing pressure and H2O activity and is accompanied by little or no deformation. M2 developed at lower pressures and temperatures (650–750° C, 4.5–5.5 kbar) and is distinguished by a second local overprint of hydrous phases that reflects an input of aqueous fluids probably associated with the intrusion of a series of granitic dykes and veins. Effects of M3 are confined to the Mitchel detachment zone, an anastomosing early Miocene detachment fault, and are characterized by local ductile/brittle deformation (D2) of the pre-existing high-grade rocks and granitoid intrusives and by the production of mylonites and mylonitic gneisses under greenschist facies conditions (300–350° C, 3–5 kbar). The initial overprint (M1a) represents metamorphism, devolatilization and minor partial melting of supracrustal rocks under granulite facies conditions as a consequence of tectonic and, possibly, magmatic thickening. The increasing pressure transition of M1a to M1b reflects a period of continued compressional tectonism, thrusting and influx of H2O, in part, locally related to crystallization of partial melts. The near isothermal decompression between M1b and M2 probably represents a pre-112-Ma extensional episode that may have been the result of a decompressional readjustment of a thickened crust. Following the initial extensional event, the metamorphic complex remained at depths of 10–17 km for at least 90 Ma until it was uplifted following Miocene extension. M3 develops locally in response to this second extensional period resulting from the early Miocene detachment faulting.  相似文献   
4.
Based on daily ECMWF gridpoint data of two winters during 1981—1983 including an ENSOyear,propagation of low frequency oscillations(LFO)during Northern Hemisphere winters andtheir influences upon 30—60 day oscillations of the subtropical jet stream are studied with the sta-tistical methods as complex empirical orthogonal function(CEOF)and so on.Results show that inthe winter of a normal year(1981—1982),30—60 day oscillations in the subtropical zone aremainly in the northern and southern flanks of exit region of jet stream.In the ENSO year(1982—1983),they are mainly in the vicinity of entrance and exit regions of jet stream.Intraseasonalchanges of subtropical jet stream manifested themselves as latitudinal fluctuation or longitudinalprogression or regression of about 40 day period.There are marked differences between propagat-ing passages of low frequency modes responsible for changes of subtropical jet stream in the normalyear(1981—1982)and in the ENSO year(1982—1983).Changes of oscillation amplitude showobvious phases.In general,the one in late winter is stronger than that in early winter,strongestone occurs in February.  相似文献   
5.
宁波商帮是我国十大商帮之一 ,百年经久不衰 ,究其原因是宁波商帮受到独特的宁波城市文化熏陶。宁波得天独厚的海洋优势 ,造就了有悠久历史凝结和中外文化交融的宁波海洋文化。海洋文化是一种先进的文化 ,具有大海的许多秉性 :大度、创新、包容。宁波城市文化把中国传统的儒家文化和宁波海洋文化很好地结合起来。正是这种独特的宁波城市文化 ,才哺育出顽强开拓、勇于创新 ,克勤克俭、脚踏实地 ,注重团队、和衷共济的“宁波商帮精神”。  相似文献   
6.
宁潭岩体是由马田、亭子、陈冲、老虎头 4个单元组成的遭受了变形变质改造的花岗岩复式岩体。岩石学、岩石化学、地球化学特征反映该岩体属后碰撞强过铝花岗岩。其源区既包含有不成熟的富含长英质物质的特性 ,也有成熟的、富含粘土的特性。岩体的形成温度为 85 0~ 92 5℃ ,同位素年龄为 35 4~ 4 4 0Ma。可能是加里东期扬子板块与华夏板块碰撞后 ,在拉伸构造作用下岩浆底辟侵位而成  相似文献   
7.
In the northern limb of the 2.06-Ga Bushveld Complex, the Platreef is a platinum group elements (PGE)-, Cu-, and Ni-mineralized zone of pyroxenite that developed at the intrusion margin. From north to south, the footwall rocks of the Platreef change from Archaean granite to dolomite, hornfels, and quartzite. Where the footwall is granite, the Sr-isotope system is more strongly perturbed than where the footwall is Sr-poor dolomite, in which samples show an approximate isochron relationship. The Nd-isotope system for samples of pyroxenite and hanging wall norite shows an approximate isochron relationship with an implied age of 2.17 ± 0.2 Ga and initial Nd-isotope ratio of 0.5095. Assuming an age of 2.06 Ga, the ɛNd values range from −6.2 to −9.6 (ave. −7.8, n = 17) and on average are slightly more negative than the Main Zone of the Bushveld. These data are consistent with local contamination of an already contaminated magma of Main Zone composition. The similarity in isotope composition between the Platreef pyroxenites and the hanging wall norites suggests a common origin. Where the country rock is dolomite, the Platreef has generally higher plagioclase and pyroxene δ 18O values, and this indicates assimilation of the immediate footwall. Throughout the Platreef, there is considerable petrographic evidence for sub-solidus interaction with fluids, and the Δ plagioclase–pyroxene values range from −2 to +6, which indicates interaction at both high and low temperatures. Whole-rock and mineral δD values suggest that the Platreef interacted with both magmatic and meteoric water, and the lack of disturbance to the Sr-isotope system suggests that fluid–rock interaction took place soon after emplacement. Where the footwall is granite, less negative δD values suggest a greater involvement of meteoric water. Consistently higher values of Δ plagioclase–pyroxene in the Platreef pyroxenites and hanging wall norites in contact with dolomite suggest prolonged interaction with CO2-rich fluid derived from decarbonation of the footwall rocks. The overprint of post crystallization fluid–rock interaction is the probable cause of the previously documented lack of correlation between PGE and sulfide content on the small scale. The Platreef in contact with dolomite is the focus of the highest PGE grades, and this suggests that dolomite contamination played a role in PGE concentration and deposition, but the exact link remains obscure. It is a possibility that the CO2 produced by decarbonation of assimilated dolomite enhanced the process of PGE scavenging by sulfide precipitation.  相似文献   
8.
Mafic rocks in the Chipman domain of the Athabasca granulite terrane, western Canadian Shield, provide the first well‐documented record of two distinct high‐P granulite facies events in the same domain in this region. Textural relations and the results of petrological modelling (NCFMASHT system) of mafic granulites are interpreted in terms of a three‐stage tectonometamorphic history. Stage 1 involved development of the assemblage Grt + Cpx + Qtz ± Pl (M1) from a primary Opx‐bearing igneous precursor at conditions of 1.3 GPa, 850–900 °C. Field and microstructural observations suggest that M1 developed synchronously with an early S1 gneissic fabric. Stage 2 is characterized by heterogeneous deformation (D2) and synkinematic partial retrogression of the peak assemblage to an amphibole‐bearing assemblage (M2). Stage 3 involved a third phase of deformation and a return to granulite facies conditions marked by the prograde breakdown of amphibole (Amph2) to produce matrix garnet (Grt3a) and the coronitic assemblage Cpx3b + Opx3b + Ilm3b + Pl3b (M3b) at 1.0 GPa, 800–900 °C. M1 and M3b are correlated with 2.55 and 1.9 Ga metamorphic generations of zircon, respectively, which were dated in a separate study. Heterogeneous strain played a crucial role in both the development and preservation of these rare examples of multiple granulite facies events within single samples. Without this fortuitous set of circumstances, the apparent reaction history could have incorrectly led to an interpretation involving a single‐cycle high‐grade event. The detailed PTtD history constructed for these rocks provides the best evidence to date that much of the east Lake Athabasca region experienced long‐term lower crustal residence from 2.55 to 1.9 Ga, and thus the region represents a rare window into the reactivation and ultimate stabilization processes of cratonic lithosphere.  相似文献   
9.
Economic concentrations of Fe–Ti oxides occur as massive,conformable lenses or layers in the lower part of the Panzhihuaintrusion, Emeishan Large Igneous Province, SW China. Mineralchemistry, textures and QUILF equilibria indicate that oxidesin rocks of the intrusion were subjected to extensive subsolidusre-equilibration and exsolution. The primary oxide, reconstructedfrom compositions of titanomagnetite in the ores and associatedintergrowths, is an aluminous titanomagnetite (Usp40) with 40wt % FeO, 34 wt % Fe2O3, 16·5 wt % TiO2, 5·3 wt% Al2O3, 3·5 wt % MgO and 0·5 wt % MnO. This compositionis similar to the bulk composition of the oxide ore, as inferredfrom whole-rock data. This similarity strongly suggests thatthe ores formed from accumulation of titanomagnetite crystals,not from immiscible oxide melt as proposed in earlier studies.The occurrence of oxide ores in the lower parts of the Panzhihuaintrusion is best explained by settling and sorting of densetitanomagnetite in the ferrogabbroic parental magma. This magmamust have crystallized Fe–Ti oxides relatively early andabundantly, and is likely to have been enriched in Fe and Tibut poor in SiO2. These features are consistent with fractionationof mantle-derived melts under relatively high pressures (10kbar), followed by emplacement of the residual magma at 5 kbar.This study provides definitive field and geochemical evidencethat Fe–Ti oxide ores can form by accumulation in ferrogabbro.We suggest that many other massive Fe–Ti oxide depositsmay have formed in a similar fashion and that high concentrationsof phosphorus or carbon, or periodic fluctuation of fO2 in themagma, are of secondary importance in ore formation. KEY WORDS: ELIP; Fe–Ti oxide ore; layered intrusion; Panzhihua; QUILF  相似文献   
10.
To investigate eclogite melting under mantle conditions, wehave performed a series of piston-cylinder experiments usinga homogeneous synthetic starting material (GA2) that is representativeof altered mid-ocean ridge basalt. Experiments were conductedat pressures of 3·0, 4·0 and 5·0 GPa andover a temperature range of 1200–1600°C. The subsolidusmineralogy of GA2 consists of garnet and clinopyroxene withminor quartz–coesite, rutile and feldspar. Solidus temperaturesare located at 1230°C at 3·0 GPa and 1300°C at5·0 GPa, giving a steep solidus slope of 30–40°C/GPa.Melting intervals are in excess of 200°C and increase withpressure up to 5·0 GPa. At 3·0 GPa feldspar, rutileand quartz are residual phases up to 40°C above the solidus,whereas at higher pressures feldspar and rutile are rapidlymelted out above the solidus. Garnet and clinopyroxene are theonly residual phases once melt fractions exceed 20% and garnetis the sole liquidus phase over the investigated pressure range.With increasing melt fraction garnet and clinopyroxene becomeprogressively more Mg-rich, whereas coexisting melts vary fromK-rich dacites at low degrees of melting to basaltic andesitesat high melt fractions. Increasing pressure tends to increasethe jadeite and Ca-eskolaite components in clinopyroxene andenhance the modal proportion of garnet at low melt fractions,which effects a marked reduction in the Al2O3 and Na2O contentof the melt with pressure. In contrast, the TiO2 and K2O contentsof the low-degree melts increase with increasing pressure; thusNa2O and K2O behave in a contrasted manner as a function ofpressure. Altered oceanic basalt is an important component ofcrust returned to the mantle via plate subduction, so GA2 maybe representative of one of many different mafic lithologiespresent in the upper mantle. During upwelling of heterogeneousmantle domains, these mafic rock-types may undergo extensivemelting at great depths, because of their low solidus temperaturescompared with mantle peridotite. Melt batches may be highlyvariable in composition depending on the composition and degreeof melting of the source, the depth of melting, and the degreeof magma mixing. Some of the eclogite-derived melts may alsoreact with and refertilize surrounding peridotite, which itselfmay partially melt with further upwelling. Such complex magma-genesisconditions may partly explain the wide spectrum of primitivemagma compositions found within oceanic basalt suites. KEY WORDS: eclogite; experimental petrology; mafic magmatism; mantle melting; oceanic basalts  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号