首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6393篇
  免费   1751篇
  国内免费   838篇
地球科学   8982篇
  2024年   15篇
  2023年   101篇
  2022年   177篇
  2021年   191篇
  2020年   214篇
  2019年   302篇
  2018年   214篇
  2017年   261篇
  2016年   325篇
  2015年   293篇
  2014年   542篇
  2013年   360篇
  2012年   314篇
  2011年   397篇
  2010年   404篇
  2009年   439篇
  2008年   438篇
  2007年   403篇
  2006年   381篇
  2005年   321篇
  2004年   286篇
  2003年   281篇
  2002年   291篇
  2001年   232篇
  2000年   226篇
  1999年   209篇
  1998年   197篇
  1997年   181篇
  1996年   218篇
  1995年   197篇
  1994年   138篇
  1993年   122篇
  1992年   86篇
  1991年   51篇
  1990年   41篇
  1989年   34篇
  1988年   26篇
  1987年   18篇
  1986年   10篇
  1985年   4篇
  1984年   13篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   4篇
  1979年   4篇
  1978年   4篇
  1977年   8篇
  1954年   6篇
排序方式: 共有8982条查询结果,搜索用时 31 毫秒
1.
盐水沟北铜矿区位于新疆库车县北部,其大地构造位置处于塔吉克-塔里木陆块区、塔里木陆块、塔里木北缘隆起、库车前陆盆地,区内构造活动强烈。铜矿床赋存于新近纪中新统康村组第一岩性段,矿体呈层状,严格受地层控制。区内共圈定10个铜矿体,矿石矿物主要为孔雀石、赤铜矿、水胆矾、自然铜等,矿体内无夹石,顶、底板围岩均为褐红色及浅红色粉质泥岩。该矿床为砂岩型铜矿床。  相似文献   
2.
上扬子地台震旦系铅锌矿床类型及找矿方向   总被引:13,自引:0,他引:13  
上扬子地台含铅锌矿地层主要为震旦系。震旦系在上扬子地台主要发育上统灯影组,次有下统陡山沱组。将上扬子地台震旦系铅锌矿床成因划分为一级为叠生矿床,二级为层控矿床,三级为热水沉积改造矿床和热水沉积再造矿床四级类型,该类型按铅锌比例进一步划分为富铅型、富锌型、铅锌共生型。研究区内最重要的铅锌矿床成因类型为南郑马元、会东大梁子铅锌矿为代表的富锌型。陕西南郑、紫阳—镇坪地区,湖北武当、神农架、黄陵地区,以及地台西缘的安宁河、甘洛—小江、峨边—寻甸等地区的震旦系是寻找铅锌矿的最有利地段。  相似文献   
3.
4.
密度和压缩系数的散射层析成像法   总被引:1,自引:1,他引:0  
本文在速度成像的基础上研究了同时对密度和压缩系数成像的散射波层析成像法.对不同散射角度的计算可以得到一系列反演图像,拟合这些图像,从而可以有效地达到对密度和压缩系数(或速度)成像的目的.与单纯的速度成像相比,增加了反演的难度.首先是对资料的方位性要求增加;其次是对资料的利用率下降.即便如此,从对较少量的炮点和检波点资料的数值计算来看,仍取得了满意的成像结果.我们对组成字母“A”的散射体结构进行了成像计算,结果能够同时再现密度和压缩系数,成像清晰,表明了方法的可行性,并能应用于复杂结构的成像问题.  相似文献   
5.
Results of a single group participating in an international experiment are analyzed. The experiment served to verify computational predictions of the ground-motion variations due to near-surface geological effects at a site established for that purpose by the California Department of Conservation. Based on an acceleration record at a rock location, and geotechnical model of medium, records at the other locations of a nearby sedimentary deposit were predicted. A 2-D finite-difference sensitivity analysis suggested that the lateral wave-propagation effects are negligibly small, and locally 1-D computations are sufficient for the present site. Those computations are compared with observations not available to the authors during the blind prediction. Peak accelerations, peak velocities and RMS accelerations were predicted with errors less than 159%, 114% and 62%, respectively. Maxima of the response spectra were fitted within a factor of 2. The predicted and observed Husid's plots (i.e., the normalized cumulative plots of the acceleration squared) have the correlation coefficients 0.98. The detected misfits do not show any simple relation to the instrument location, component, frequency, or time.  相似文献   
6.
本文根据野外地质填图和水系位移测量结果,论述了香山-天景山弧形断裂带新生代有两个不同活动性质的阶段,即早期阶段的强烈挤压和晚期阶段的左旋走滑兼挤压。分析、讨论了不同活动阶段的时间界限和转变原因。指出了1709年中卫南71/_2级地震形变带的表现形式、延伸范围  相似文献   
7.
The eastern margin of the Variscan belt in Europe comprises plate boundaries between continental blocks and terranes formed during different tectonic events. The crustal structure of that complicated area was studied using the data of the international refraction experiments CELEBRATION 2000 and ALP 2002. The seismic data were acquired along SW–NE oriented refraction and wide-angle reflection profiles CEL10 and ALP04 starting in the Eastern Alps, passing through the Moravo-Silesian zone of the Bohemian Massif and the Fore-Sudetic Monocline, and terminating in the TESZ in Poland. The data were interpreted by seismic tomographic inversion and by 2-D trial-and-error forward modelling of the P waves. Velocity models determine different types of the crust–mantle transition, reflecting variable crustal thickness and delimiting contacts of tectonic units in depth. In the Alpine area, few km thick LVZ with the Vp of 5.1 km s− 1 dipping to the SW and outcropping at the surface represents the Molasse and Helvetic Flysch sediments overthrust by the Northern Calcareous Alps with higher velocities. In the Bohemian Massif, lower velocities in the range of 5.0–5.6 km s− 1 down to a depth of 5 km might represent the SE termination of the Elbe Fault Zone. The Fore-Sudetic Monocline and the TESZ are covered by sediments with the velocities in the range of 3.6–5.5 km s− 1 to the maximum depth of 15 km beneath the Mid-Polish Trough. The Moho in the Eastern Alps is dipping to the SW reaching the depth of 43–45 km. The lower crust at the eastern margin of the Bohemian Massif is characterized by elevated velocities and high Vp gradient, which seems to be a characteristic feature of the Moravo-Silesian. Slightly different properties in the Moravian and Silesian units might be attributed to varying distances of the profile from the Moldanubian Thrust front as well as a different type of contact of the Brunia with the Moldanubian and its northern root sector. The Moho beneath the Fore-Sudetic Monocline is the most pronounced and is interpreted as the first-order discontinuity at a depth of 30 km.  相似文献   
8.
We designed a new seismic source model for Italy to be used as an input for country-wide probabilistic seismic hazard assessment (PSHA) in the frame of the compilation of a new national reference map.

We started off by reviewing existing models available for Italy and for other European countries, then discussed the main open issues in the current practice of seismogenic zoning.

The new model, termed ZS9, is largely based on data collected in the past 10 years, including historical earthquakes and instrumental seismicity, active faults and their seismogenic potential, and seismotectonic evidence from recent earthquakes. This information allowed us to propose new interpretations for poorly understood areas where the new data are in conflict with assumptions made in designing the previous and widely used model ZS4.

ZS9 is made out of 36 zones where earthquakes with Mw > = 5 are expected. It also assumes that earthquakes with Mw up to 5 may occur anywhere outside the seismogenic zones, although the associated probability is rather low. Special care was taken to ensure that each zone sampled a large enough number of earthquakes so that we could compute reliable earthquake production rates.

Although it was drawn following criteria that are standard practice in PSHA, ZS9 is also innovative in that every zone is characterised also by its mean seismogenic depth (the depth of the crustal volume that will presumably release future earthquakes) and predominant focal mechanism (their most likely rupture mechanism). These properties were determined using instrumental data, and only in a limited number of cases we resorted to geologic constraints and expert judgment to cope with lack of data or conflicting indications. These attributes allow ZS9 to be used with more accurate regionalized depth-dependent attenuation relations, and are ultimately expected to increase significantly the reliability of seismic hazard estimates.  相似文献   

9.
An integrated GIS-based tool (GTIS) was constructed to estimate site effects related to the earthquake hazards in the Gyeongju area of Korea. To build the GTIS for the study area, intensive site investigations and geotechnical data collections were performed and a walk-over site survey was additionally carried out to acquire surface geo-knowledge data in accordance with the procedure developed to build the GTIS. For practical applications of the GTIS used to estimate the site effects associated with the amplification of ground motion, seismic microzoning maps of the characteristic site period and the mean shear wave velocity to a depth of 30 m were created and presented as a regional synthetic strategy addressing earthquake-induced hazards. Additionally, based on one-dimensional site response analyses, various seismic microzoning maps for short- and mid-period amplification potentials were created for the study area. Case studies of seismic microzonations in the Gyeongju area verified the usefulness of the GTIS for predicting seismic hazards in the region.  相似文献   
10.
The character of convergence along the Arabian–Iranian plate boundary changes radically eastward from the Zagros ranges to the Makran region. This appears to be due to collision of continental crust in the west, in contrast to subduction of oceanic crust in the east. The Makran subduction zone with a length of about 900 km display progressively older and highly deformed sedimentary units northward from the coast, together with an increase in elevation of the ranges. North of the Makran ranges are large subsiding basins, flanked to the north by active volcanoes. Based on 2D seismic reflection data obtained in this study, the main structural provinces and elements in the Gulf of Oman include: (i) the structural elements on the northeastern part of the Arabian Plate and, (ii) the Offshore Makran Accretionary Complex. Based on detailed analysis of these data on the northeastern part of the Arabian Plate five structural provinces and elements—the Musendam High, the Musendam Peneplain, the Musendam Slope, the Dibba Zone, and the Abyssal Plain have been identified. Further, the Offshore Makran Accretionary Complex shown is to consist Accretionary Prism and the For-Arc Basin, while the Accretionary Prism has been subdivided into the Accretionary Wedge and the Accreted/Colored Mélange. Lastly, it is important to note that the Makran subduction zone lacks the trench. The identification of these structural elements should help in better understanding the seismicity of the Makran region in general and the subduction zone in particular. The 1945 magnitude 8.1 tsunamigenic earthquake of the Makran and some other historical events are illustrative of the coastal region’s vulnerability to future tsunami in the area, and such data should be of value to the developing Indian Ocean Tsunami Warning System.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号