首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   2篇
交通运输   19篇
  2018年   3篇
  2015年   3篇
  2014年   3篇
  2013年   3篇
  2012年   4篇
  2011年   2篇
  2006年   1篇
排序方式: 共有19条查询结果,搜索用时 0 毫秒
1.
基于动车组车体结构改进的低阶模态分析   总被引:1,自引:0,他引:1  
车体前三阶模态特别是一阶垂向弯曲模态是车体设计中需要控制的一个重要参数.车体结构的改进设计,必然会使引起车体的振动模态数改变.因此分析出车体各大部件的结构变化对于车体低阶模态的影响因素及其规律,为车体创新性设计提供了一个可参考的设计原则.  相似文献   
2.
利用有限元分析软件ANSYS对预负荷空心圆柱滚子(HCR)轴承的承戢性能进行分析。主要计算预负荷空心圆柱滚子轴承的最底部滚子和次底部滚子的等效应力、接触应力和滚子内圈拉应力的分布情况,分析滚子空心度和过盈量对轴承应力和额定栽荷的影响。通过分析和计算得到数据结果为预负荷空心圆柱滚子轴承的进一步优化提供参考依据。  相似文献   
3.
开发了一种可用台式工作站实现的分析列车耐撞性的计算方法。计算方法分为三个步骤,并通过给出每个步骤的计算实例对该计算方法进行了说明。  相似文献   
4.
以新一代高速列车车体为研究对象,对车体结构进行了有限元分析,得到了车体侧顶圆弧结构区的应力分布.在对圆弧结构区弹性力学平面简化模型分析的基础上给出了型材分布规律,对型材结构进行了优化改进,使车体圆弧结构区的应力明显降低,为车体结构的实际设计和优化提供了有效的参考依据.  相似文献   
5.
为了研究某机车车体结构的耐碰撞性能,基于仿真软件的工程应用,建立了详细有效的机车车辆车体结构非线性动力学有限元模型.其中,重点对机车车钩缓冲装置和吸能装置进行了详细的有限元模拟.并以装有车钩缓冲装置和吸能装置的机车以10 km/h速度撞击刚性墙为例,验证了该机车的耐碰撞性能.结果表明,该机车在碰撞过程中,车钩缓冲装置和吸能装置很好的发挥了其能量吸收作用,机车车体结构没有发生塑性变形.  相似文献   
6.
基于城际动车组运营特点分析了其车体结构疲劳强度,并以此优化车体结构设计。仿真和试验表明,采用上述优化措施的系列城际动车组车体既实现了轻量化目标,又满足强度、刚度等安全指标要求。  相似文献   
7.
X射线衍射法测试高速列车车体铝合金残余应力   总被引:2,自引:0,他引:2       下载免费PDF全文
为了准确、无损、快速地检测高速列车铝合金的表面残余应力,采用等强杆拉伸试验方法,用X射线衍射法对测试结果进行标定,并用X射线衍射法、盲孔法以及有限元法对测得的车体铝合金焊接接头残余应力进行了对比.结果表明:等强杆拉伸试验标定过程中,在10~70 MPa范围内,随着拉伸载荷的增加,X射线法测得的应力与载荷应力具有一致性,可采用X射线衍射法对车体关键部位应力状态进行测试分析,X射线衍射法残余应力的数值略大于理论计算值和电测法计算值;车顶铝合金焊接接头最大残余应力可达146.3 MPa;X射线衍射法与等强杆标定方法、盲孔法、有限元计算模拟方法的残余应力结果保持了较好的一致性.  相似文献   
8.
轨道不平顺是高速列车振动的主要激励源,其激起的列车系统振动具有典型的随机振动行为,其对列车运行的安全性、平顺性具有重要影响。针对此问题,利用虚拟激励法为核心算法的SiPESC-HiPEM计算百万自由度复杂三维车体弹性体的随机振动响应,并根据振动响应结果及疲劳累积损伤理论计算车体的疲劳寿命,其高效、精确的特点为高速列车动力学设计、性能预测提供了有效手段。  相似文献   
9.
以某高速动车组中间车钩为研究对象,在碰撞速度大于5 km/h的条件下,进行车钩缓冲器的动力学性能碰撞试验。分析不同速度下车钩力和缓冲器压缩量相对于时间的变化关系,以及缓冲器动态特性曲线的变化规律。研究结果表明:随着碰撞速度的增大,缓冲器每完成一个回程的时间变短;在相同的撞击速度下,运动端缓冲器的压缩量要比静止端缓冲器的压缩量要大;车钩缓冲器在真实的碰撞过程中并不是完全走同一条加载曲线,在一定的碰撞速度范围内,随着碰撞速度的提高,加载曲线会相应的升高,当超过临界碰撞速度时,随着碰撞速度的提高,加载曲线会相应的降低。对比了碰撞试验与落锤试验得到的缓冲器特性曲线,说明通过碰撞试验来获取缓冲器真实的动态特性曲线是有必要的。研究成果为深入车钩动力学仿真提供参考和依据。  相似文献   
10.
为研究高速列车受电弓气动噪声源分布及频谱特性,利用计算流体力学原理对高速列车受电弓流场进行计算,获得了受电弓表面脉动压力;在此基础上,利用FW-H方程计算高速列车受电弓远场气动噪声.计算结果表明:高速列车受电弓远场气动噪声具有较为明显的指向性,其指向性基本上不受列车速度的影响;远场监测点总声压及在10~20附近达到最大.受电弓气动噪声的总声压级随着列车速度的增加而显著增大;受电弓远场气动噪声具有明显的主频,且随着列车速度的增加,远场气动噪声的主频也增大;受电弓顶部横梁是引起受电弓气动噪声的主要因素.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号