首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
交通运输   8篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2019年   3篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
2.
为研究高速列车受电弓流线型结构对受电弓气动特性的影响,基于计算流体力学理论,构建某型号高速列车4车编组模型.采用k-ωSST湍流模型进行数值模拟,分析得到流线型结构对受电弓的气动特性及流场的影响.计算结果表明:流线型受电弓减小了滞止区面积和迎风面积,并减缓了受电弓尾部涡流,从而有效降低了受电弓受到的压差阻力,相较于现役...  相似文献   
3.
在长期的高速列车运营过程中,极易形成前后车辆的不同形式偏置,造成列车气动性能改变,甚至可能引发行车平稳性问题,极大影响乘坐舒适性和安全性。以高速列车尾车作为研究对象,探究尾车上下偏置时,高速列车尾部流场变化以及气动特性。基于SST k-ω双方程湍流模型,采用数值仿真方法研究了350 km/h高速列车尾车无偏置、尾车下降20 mm、尾车下降40 mm、尾车下降60 mm、尾车上升20 mm、尾车上升40 mm以及尾车上升60 mm 7种工况下列车的气动性能,分析高速列车气动阻力的变化规律,揭示了不同垂向位移下高速列车尾部流场特性以及列车表面压力分布情况。研究结果表明:高速列车尾部垂向位移对列车整体气动阻力影响较小,但对高速列车气动阻力分布以及流场特性造成一定影响。当尾车偏置位移达到60 mm时,列车车体气动阻力相对于无偏置工况分别降低了-1.11%和2.64%,转向架气动阻力相对无偏置情况下分别降低了11.35%和-17.43%。此外,尾车偏置对列车近尾流区域流场结构有一定影响,尾车鼻锥下方排障器周围漩涡结构由双漩涡结构向单漩涡结构转变;鼻尖处漩涡结构随着尾车高度下降而增大,随着尾车高度...  相似文献   
4.
5.
为制定时速250 km速度等级动车组设备舱裙板气动载荷谱,通过对实际运行中的时速250 km等级动车组设备舱裙板气动载荷开展线路测试研究,并将全线所有列车通过隧道、列车明线交会工况集中起来统计分析,得出了设备舱裙板各测点内外压差的最大值、最小值和峰峰值的统计分布规律.经分析,列车隧道通过、隧道交会、明线交会时,设备舱裙板各点绝对压力的有不同特征;设备舱裙板气动载荷压差峰峰值最大不超过1500 Pa,该值可作为时速250 km速度等级列车设备舱裙板静强度载荷设计输入参考值;压差峰峰值主要集中在1000 Pa左右,该值可以作为时速250 km等级动车组设备舱裙板气动载荷疲劳设计输入参考值.  相似文献   
6.
以某型号高速列车为基础,针对3种不同设计形式的外风挡结构,包括有缝隙外风挡、无缝隙外风挡和底部拆除外风挡,对列车明线运行时外风挡周围流场分布和外风挡所受的气动载荷的仿真分析研究.计算结果表明:外风挡附近的压力急剧变化,随列车运行速度增加,外风挡受到气动载荷增加.对于有缝外风挡和底部拆除外风挡方案,外风挡受到拉伸拱形胶囊向胶囊外部的拉力,而对于无缝隙外风挡,外风挡受到挤压拱形胶囊向胶囊内部的压力.无缝隙外风挡与有缝隙外风挡方案相比,外风挡受到压差减小;底部拆除外风挡方案与有缝隙外风挡相比,使外风挡胶囊受到压差也明显减小.通过空气动力学线路试验证实仿真分析计算得到外风挡压差与试验结果相差不大,因此仿真分析结果可以用来指导外风挡设计.  相似文献   
7.
利用风洞试验、CFD方法及线路实车验证,比较分析某型列车三种不同型式的裙板方案对整车空气动力学阻力性能及转向架区域积雪结冰性能影响.研究发现:裙板的大小对列车阻力性能的影响与转向架区域积雪结冰性能的影响是相互矛盾,裙板越大列车整车阻力性能越优,而大裙板处存在较大的死角,加之安装大裙板时转向架区域空气流速降低,不利于排雪,容易导致雪在转向架及裙板死角处堆积,造成较多积雪,从而影响行车安全.应该综合考虑裙板对列车的空气动力学阻力性能与转向架区域积雪结冰性能的影响,选择折中的方案,最大限度的照顾列车的整车空气动力学阻力性能,又兼顾列车转向架积雪结冰性能.依此原则设计的小裙板作为高寒动车组裙板方案在实车中得到广泛应用,取得了理想效果.  相似文献   
8.
为研究地铁列车内空气循环状态对客室压力变化及列车开关门过程的影响,搭建了车内外压力测试系统,开展了库内静态及线路动态压力测试,针对空气温度控制内外循环、恒温空气内外循环及开关门动作等过程的客室内压力变化特点进行了试验对比研究。研究结果表明:空气降温内循环过程车内压力变化显著,快速降温过程将导致在进站开门时形成开门阻力;车门关闭过程中,由于气阻效应和新风系统的作用,车内压力升高,形成关门阻力;列车气密性和隔热性能越好,客室内温度变化过程越接近绝热过程,温度变化导致的压力变化就越显著;调控空气循环过程,限制空气制冷循环强度,能够有效抑制由此引起的车内压力变化和降低关门气阻。文章为解决因列车内空气循环过程而导致的车门开闭异常及舒适性下降提供了试验依据,并提供了有效优化方案。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号