首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   1篇
交通运输   86篇
  2022年   1篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2014年   2篇
  2013年   3篇
  2012年   3篇
  2011年   6篇
  2010年   8篇
  2009年   10篇
  2008年   6篇
  2007年   2篇
  2006年   4篇
  2005年   6篇
  2004年   4篇
  2003年   3篇
  2002年   6篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
排序方式: 共有86条查询结果,搜索用时 718 毫秒
1.
基于GB11557—2011的要求,为某微型电动汽车设计了一款转向管柱吸能支撑结构,它由两根中部含V型缺口的槽型薄壁梁组合而成,其塑性变形阶段的极限强度水平可由V型缺口关键参数c和夹角θ调控。仿真结果表明:人体模块碰撞力随c和θ增大呈非线性减小。由c=24mm的数值仿真和碰撞试验结果对比可知:两者塑性变形模式一致;碰撞力曲线吻合得较好;人体模块碰撞力峰值偏差仅为6.1%。新支撑结构的强度和碰撞吸能水平在冲击试验和驾乘过程中均符合耐撞性设计要求。  相似文献   
2.
本文介绍了美国公路安全保险协会(IIHS)提出的一项新的汽车碰撞试验,即小偏置正面碰撞,此类碰撞更接近于现实的汽车碰撞事故,对乘员的伤害很大。此类碰撞正受到全世界汽车安全领域愈来愈多的关注和研究。本文分析了此类碰撞与常规碰撞的不同及其原因,并提出了相关的改进意见。  相似文献   
3.
根据侧碰撞试验中车门的运动特点,将车门运动的速度曲线简化为双速度平台曲线,使得车门运动对乘员伤害的影响可用接触时间、过渡段斜率及第2速度平台3个特征参数的变化完整地描述.利用MADYMO仿真软件建立了侧碰撞台车模型,研究了3个特征参数与侧碰撞假人伤害值响应的相关性.  相似文献   
4.
对行人头部碰撞波形进行了合理简化,研究了3种典型简化波形对行人头部碰撞所需吸能空间的影响,推导出了满足头部伤害指标HIC=1000且所需吸能空间最小的最优简化波形,提出了有利于行人头部保护的碰撞波形改进措施.建立了某车型行人头部碰撞有限元模型并进行了试验验证,结果表明,所提改进措施可以有效地提高行人头部保护性能.  相似文献   
5.
论述了安全气囊点火算法的理论依据,计论了点火条件和最佳点火时刻与实际点火时刻的确定方法;分析了碰撞感应系统的研究进展,指出了正面碰撞和侧面碰撞感应系统传感器布置的基本原则;论述了点火判断指标的实质意义,分析了常见点火算法的特性,并提出了验证点火算法的几种试验方法。  相似文献   
6.
指出车身结构耐撞性概念设计的主要目标是:由车辆乘员伤害指标确定出整车碰撞波形(正面碰撞),根据波形将车身结构性能分解参数化设计。探讨比较了使用CAE技术建立车身概念设计模型的各种主要方法工具,包括LMS模型、有限元Beam—element模型和多体Madymo Frame模型。论述了相关的建模特点和建模共同的基础:结构刚度特性和惯性特性,并讨论这些概念设计模型特有的局限性以及需要的进一步工作。  相似文献   
7.
本文旨在对棱边强化薄壁方管的静动态轴向压溃进行研究。首先分析了方管静态平均压溃力公式中的能量等效流动应力选取方法及其对理论预测结果的影响,之后结合Cowper-Symonds经验公式,导出了动态平均压溃力公式。同时基于Hypermesh 9.0建立了440A原始和棱边强化薄壁方管静动态轴向压溃有限元模型,仿真再现了塑性变形过程和压溃力波动状况,仿真值与理论值吻合得较好,最大偏差不超过4.0%。最后,制作若干个棱边塑性应变强化的35钢方管,进行压溃试验,验证了静态轴向压溃理论的有效性,理论值与试验值之间偏差仅为7.1%。本研究为棱边强化薄壁部件的强度设计及其在车身结构中的应用提供了参考。  相似文献   
8.
车身结构耐撞性的概念设计是由车辆乘员伤害指标确定出整车碰撞波形(正面碰撞),根据波形将车身结构性能分解参数化设计,文章从CAE建模角度。探讨比较了建立车身概念设计模型的各种主要方法工具,包括LMS模型、有限元Beam—element模型和多体MadymoFrame模型。表明各模型的建模特点和基本方法主要取决于结构刚度特性和惯性特性的提取与参数化。指出三维模型在概念设计阶段具有适用性和局限性。  相似文献   
9.
10.
4系统模型 在MADYMO软件中建立整车坐标系下的系统模型,X向后,Y向右,Z向上。整个模型如图16所示,包括气囊、假人、安全带和座椅等,模型中车身几何与安全带特性等数据均与系统试验状态一致,气囊为落锤试验中经过验证的模型。加速度波形,如图5所示,该模型经过了整车试验验证。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号