首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
医药卫生   1篇
  1999年   1篇
排序方式: 共有1条查询结果,搜索用时 31 毫秒
1
1.
Controlled DNA Delivery Systems   总被引:11,自引:0,他引:11  
Purpose. Genes are of increasing interest as pharmaceuticals, but current methods for long-term gene delivery are inadequate. Controlled release systems using biocompatible and/or biodegradable polymers offer many advantages over conventional gene delivery approaches. We have characterized systems for controlled delivery of DNA from implantable polymer matrices (EVAc: poly (ethylene-co-vinyl acetate)) and injectable microspheres (PLGA and PLA: poly (D, L-lactide-co-glycolide) copolymer and poly (L-lactide), respectively). Methods. Herring sperm DNA and bacteria phage DNA were encapsulated as a model system. Released DNA concentration was determined by fluoroassays. Agarose electrophoresis was used to determine the dependence of release rate on DNA size. The Green Fluorescent Protein (GFP) gene was used to determine the integrity and functionality of released DNA. Results. Both small and large DNA molecules (herring sperm DNA, 0.1–0.6 kb; GFP, 1.9 kb; DNA, 48.5 kb) were successfully encapsulated and released from EVAc matrices, and PLGA or PLA microspheres. The release from DNA-EVAc systems was diffusion-controlled. When co-encapsulated in the same matrix, the larger DNA was released more slowly than herring sperm; the rate of release scaled with the DNA diffusion coefficient in water. The chemical and biological integrity of released DNA was not changed. Conclusions. These low cost, and adjustable, controlled DNA delivery systems, using FDA-approved biocompatible/biodegradable and implantable/injectable materials, could be useful for in vivo gene delivery, such as DNA vaccination and gene therapy.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号