首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
数理化   2篇
  2007年   1篇
  2003年   1篇
排序方式: 共有2条查询结果,搜索用时 78 毫秒
1
1.
近年国外出现一种直接检测弯曲的低成本光纤曲率传感器,采用弯曲增敏技术提高光纤对弯曲的灵敏度。这种传感器的线性范围宽,能区分正向弯曲和负向弯曲,在测量较大弯曲变形的场合更具优势;并且适合埋入结构内部检测,通过转换还可测量轴向应变。然而其传感机理方面的研究仍处于探索阶段。通过分析光辐射度余弦定律理论、回音壁光线理论、沟槽角度理论等国内外对该传感器机理的研究成果,并基于平面波导的光散射损耗理论,提出了光纤曲率传感器的机理。指出弯曲引起光纤敏感区表面散射损耗的改变是导致光传输损耗改变的原因;推导出损耗与光纤弯曲半径、表面特性、光纤结构参量关系的数学模型,并通过实验验证了模型的有效性。  相似文献   
2.
Data obtained from the mobile SOUSY VHF radar at And(ya/Norway in summer 1987 have been used to study the nonlinear interactions between planetary waves, tides and gravity waves in the polar mesosphere, and the instability of background atmosphere above the mesopause. It is observed that 35-h planetary wave, diurnal, semidiurnal and terdiurnal tides are the prominent perturbations in the Lomb-Scargle spectra of the zonal wind component. By inspecting the frequency combinations, several triads are identified. By bispectral analysis it is shown that most bispectral peaks stand for quadratic coupling between tidal harmonics or between tide and planetary or gravity wave, and the height dependence of bispectral peaks reflects the variation of wave-wave interactions. Above the mesopause, the occurrence heights of the maximum L-S power spectral peaks corresponding to the prominent wave components tend to increase with their frequencies. This may result from the process in which two low frequency waves interact to generate a high frequency wave. Intensities of the planetary wave and tides increase gradually, arrive at their maxima, and then decay quickly in turn with increasing height. This kind of scene correlates with a "chain" of wave-wave resonant interactions that shifts with height from lower frequency segment to higher frequency segment. By instability analysis, it is observed that above the mesopause, the Richardson number becomes smaller and smaller with height, implying that the turbulent motion grows stronger and stronger and accordingly the background atmosphere more and more instable. It is suggested that the wave-wave sum resonant interaction and the wave dissipation due to instability are two dominant dynamical processes that occur in the mesopause region. The former invokes the energy transfer from lower frequency waves to higher frequency waves. The latter results in the heating of the atmosphere and accelerating of the background flow.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号