首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   0篇
工业技术   32篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   5篇
  2011年   4篇
  2010年   4篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2001年   1篇
  2000年   1篇
  1993年   1篇
  1991年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
1.
In this paper, we present a new variant of Particle Swarm Optimization (PSO) for image segmentation using optimal multi-level thresholding. Some objective functions which are very efficient for bi-level thresholding purpose are not suitable for multi-level thresholding due to the exponential growth of computational complexity. The present paper also proposes an iterative scheme that is practically more suitable for obtaining initial values of candidate multilevel thresholds. This self iterative scheme is proposed to find the suitable number of thresholds that should be used to segment an image. This iterative scheme is based on the well known Otsu’s method, which shows a linear growth of computational complexity. The thresholds resulting from the iterative scheme are taken as initial thresholds and the particles are created randomly around these thresholds, for the proposed PSO variant. The proposed PSO algorithm makes a new contribution in adapting ‘social’ and ‘momentum’ components of the velocity equation for particle move updates. The proposed segmentation method is employed for four benchmark images and the performances obtained outperform results obtained with well known methods, like Gaussian-smoothing method (Lim, Y. K., & Lee, S. U. (1990). On the color image segmentation algorithm based on the thresholding and the fuzzy c-means techniques. Pattern Recognition, 23, 935–952; Tsai, D. M. (1995). A fast thresholding selection procedure for multimodal and unimodal histograms. Pattern Recognition Letters, 16, 653–666), Symmetry-duality method (Yin, P. Y., & Chen, L. H. (1993). New method for multilevel thresholding using the symmetry and duality of the histogram. Journal of Electronics and Imaging, 2, 337–344), GA-based algorithm (Yin, P. -Y. (1999). A fast scheme for optimal thresholding using genetic algorithms. Signal Processing, 72, 85–95) and the basic PSO variant employing linearly decreasing inertia weight factor.  相似文献   
2.
The particle swarm optimization (PSO) is a relatively new generation of combinatorial metaheuristic algorithms which is based on a metaphor of social interaction, namely bird flocking or fish schooling. Although the algorithm has shown some important advances by providing high speed of convergence in specific problems it has also been reported that the algorithm has a tendency to get stuck in a near optimal solution and may find it difficult to improve solution accuracy by fine tuning. The present paper proposes a new variation of PSO model where we propose a new method of introducing nonlinear variation of inertia weight along with a particle's old velocity to improve the speed of convergence as well as fine tune the search in the multidimensional space. The paper also presents a new method of determining and setting a complete set of free parameters for any given problem, saving the user from a tedious trial and error based approach to determine them for each specific problem. The performance of the proposed PSO model, along with the fixed set of free parameters, is amply demonstrated by applying it for several benchmark problems and comparing it with several competing popular PSO and non-PSO combinatorial metaheuristic algorithms.  相似文献   
3.
4.
This paper presents a performance study of a one-dimensional search algorithm for solving general high-dimensional optimization problems. The proposed approach is a hybrid between a line search algorithm of Glover (The 3-2-3, stratified split and nested interval line search algorithms. Research report, OptTek Systems, Boulder, CO, 2010) and an improved variant of a global method of Gardeux et al. (Unidimensional search for solving continuous high-dimensional optimization problems. In: ISDA ’09: Proceedings of the 2009 ninth international conference on intelligent systems design and applications, IEEE Computer Society, Washington, DC, USA, pp 1096–1101, 2009) that uses line search algorithms as subroutines. The resulting algorithm, called EM323, was tested on 19 scalable benchmark functions, with a view to observing how optimization techniques for continuous optimization problems respond with increasing dimension. To this end, we report the algorithm’s performance on the 50, 100, 200, 500 and 1,000-dimension versions of each function. Computational results are given comparing our method with three leading evolutionary algorithms. Statistical analysis discloses that our method outperforms the other methods by a significant margin.  相似文献   
5.
An efficient covering of the search space is an important issue when dealing with metaheuristics. Sensitivity analysis methods aim at evaluating the influence of each variable of a problem on a model (i.e. objective function) response. Such methods provide knowledge on the function behavior and would be suitable for guiding metaheuristics. To evaluate correctly the dimensions influences, usual sensitivity analysis methods need a lot of evaluations of the objective function or are constrained with an experimental design. In this paper, we propose a new method, with a low computational cost, which can be used into metaheuristics to improve their search process. This method is based on two global sensitivity analysis methods: the linear correlation coefficient technique and Morris’ method. We propose to transform the global study of a non linear model into a local study of quasi-linear sub-parts of the model, in order to evaluate the global influence of each input variable on the model. This sensitivity analysis method will use evaluations of the objective function done by the metaheuristic to compute a weight of each variable. Then, the metaheuristic will generate new solutions choosing dimensions to offset, according to these weights. The tests done on usual benchmark functions of sensitivity analysis and continuous optimization (CEC 2013) reveal two issues. Firstly, our sensitivity analysis method provides good results, it correctly ranks each dimension’s influence. Secondly, integrating a sensitivity analysis method into a metaheuristic (here, Differential Evolution and ABC with modification rate) improves its results.  相似文献   
6.

In this paper, a novel method for the digital two-Degrees-Of-Freedom (2DOF) controller design, called canonical RST structure, is proposed and successfully implemented based on a Multi-Objective Particle Swarm Optimization (MOPSO) approach. This is a polynomial control structure allowing independently the regulation and the tracking of discrete-time systems. An application to the variable speed control of an electrical DC Drive is investigated. The RST design and tuning problem is formulated as a multi-objective optimization problem. The proposed MOPSO algorithm which is based on the Pareto dominance is used to identify the non-dominated solutions. This approach used the leader selection strategy that is called a geographically-based system. In addition, the adaptive grid method is used to produce well-distributed Pareto fronts in the multi-objective formalism. The well known NSGA-II and the proposed MOPSO algorithms are evaluated and compared with each other in terms of several performance metrics in order to show the superiority and the effectiveness of the proposed method. Simulation results demonstrate the advantages of the MOPSO-tuned RST control structure in terms of performance and robustness.

  相似文献   
7.
The lifetime in a wireless network, in particular a wireless sensor network, depends strongly on the connectivity factor between nodes. Several factors can be at the origin of a connectivity rupture such as: lack of energy on a significant node level, infection of a vital node by a malevolent code and a logical or physical failure of a primary node. This rupture can lead in some cases to a reconfiguration of the network by generating a prejudicial overhead or in other cases to a failure of the mission assigned to the network. In this paper, we propose a DRFN approach (Detection and Replacement of a Failing Node) for the connectivity maintenance by carrying out a replacement chain according to a distributed algorithm. Through simulation, we have shown our approach efficiency. Compared with similar work, our proposed approach consumes less energy, and improves the percentage of reduction in field coverage.  相似文献   
8.
In this paper, we propose an improvement method for image segmentation using the fuzzy c-means clustering algorithm (FCM). This algorithm is widely experimented in the field of image segmentation with very successful results. In this work, we suggest further improving these results by acting at three different levels. The first is related to the fuzzy c-means algorithm itself by improving the initialization step using a metaheuristic optimization. The second level is concerned with the integration of the spatial gray-level information of the image in the clustering segmentation process and the use of Mahalanobis distance to reduce the influence of the geometrical shape of the different classes. The final level corresponds to refining the segmentation results by correcting the errors of clustering by reallocating the potentially misclassified pixels. The proposed method, named improved spatial fuzzy c-means IFCMS, was evaluated on several test images including both synthetic images and simulated brain MRI images from the McConnell Brain Imaging Center (BrainWeb) database. This method is compared to the most used FCM-based algorithms of the literature. The results demonstrate the efficiency of the ideas presented.  相似文献   
9.
In this paper we consider the resource-constrained project scheduling problem with multiple execution modes for each activity and minimization of the makespan. To solve this problem, we propose a differential evolution (DE) algorithm. We focus on the performance of this algorithm to solve the problem within small time per activity. Finally, we present the results of our thorough computational study. Results obtained on six classes of test problems and comparison with other algorithms from the literature show that our algorithm gives better solutions.  相似文献   
10.
In this paper a new Genetic Algorithm (GA) to optimize multimodal continuous functions is proposed. It is based on a splitting of the traditional GA into a sequence of three processes. The first process creates several appropriate sub-populations using the information entropy theory. The second process applies the genetic operators (selection, crossover and mutation) on every subpopulation that is so gradually enriched with better individuals. We then determine the best point s* among the best solutions issued from each of the preceding subpopulations. In the neighbourhood of this point s* is generated a population used to initialize a traditional GA in the third process. Inthis last process, the population is entirely renewed after each generation, the new population being generated in the neighborhood of the best point found. The neighborhood size is decreased after each generation. A detailedcomparison of performances with several stochastic global search methods is presented, using test functions of which local and global minima are known. Received October 2, 2000  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号