首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15370篇
  免费   345篇
  国内免费   160篇
工业技术   15875篇
  2023年   96篇
  2022年   101篇
  2021年   296篇
  2020年   226篇
  2019年   208篇
  2018年   249篇
  2017年   203篇
  2016年   295篇
  2015年   180篇
  2014年   456篇
  2013年   558篇
  2012年   1043篇
  2011年   3387篇
  2010年   1368篇
  2009年   1227篇
  2008年   888篇
  2007年   769篇
  2006年   596篇
  2005年   700篇
  2004年   624篇
  2003年   664篇
  2002年   345篇
  2001年   82篇
  2000年   51篇
  1999年   79篇
  1998年   286篇
  1997年   116篇
  1996年   89篇
  1995年   77篇
  1994年   54篇
  1993年   73篇
  1992年   45篇
  1991年   42篇
  1990年   35篇
  1989年   41篇
  1988年   31篇
  1987年   26篇
  1986年   33篇
  1985年   27篇
  1984年   48篇
  1983年   25篇
  1982年   20篇
  1981年   17篇
  1980年   11篇
  1979年   14篇
  1978年   13篇
  1977年   15篇
  1975年   8篇
  1973年   8篇
  1971年   6篇
排序方式: 共有10000条查询结果,搜索用时 651 毫秒
1.
Metal organic frameworks (MOFs) containing zirconium secondary building units (SBUs) in UiO-67 and related MOFs, are highly active for neutralizing both the chemical warfare agents and simulants, such as dimethyl methylphosphonate (DMMP). However, two recent publications gave conflicting reports of DMMP reaction with UiO-67 under ultra high vacuum (UHV) conditions, with one reporting chemisorption and reaction (Wang et al., J Phys Chem C, 2017, 121, 11261–11272) and the other reporting only physisorption and reversible desorption (Ruffley et al., J Phys Chem C, 2019, 123, 19748–19758) from very similar temperature programmed desorption experiments. We show that the discrepancy between these experiments may be explained by different levels of missing linker defects in the UiO-67 samples. We present density functional theory calculations showing that SBU sites having two-adjacent missing linkers exhibit reaction barriers that are about 30 kJ/mol lower than SBU sites having a single missing linker. We also show that topology of the undercoordinated sites plays an important role in the reaction barrier under UHV conditions.  相似文献   
2.
Silicon - Quadruple gate FinFET is a promising candidate among other multi-gate MOS devices due to it’s better scalability and higher short channel effect suppression capability in advanced...  相似文献   
3.
To prevent the adulteration of agricultural resources and provide a solution to enhance the green coffee bean supply chain, authentication using the near-infrared spectroscopy (NIRS) technique was investigated. Partial least square with discrimination analysis (PLS-DA) models combined with various preprocessing methods were built from NIR spectra of 153 Vietnamese green coffee samples. The model combined with the standard normal variate and the first order of derivative yielded excellent performance in predicting coffee species with the error cross-validation of 0.0261. PLS-DA model of mean centre and first-order derivative spectra also yielded good performance in verifying geographical indication of green coffee with the error of 0.0656. By contrast, the predicting abilities of post-harvest methods were poor. The overall results showed a high potential of the NIRS in online authentication practices.  相似文献   
4.
5.
6.
Protein assemblies provide unique structural features which make them useful as carrier molecules in biomedical and chemical science. Protein assemblies can accommodate a variety of organic, inorganic and biological molecules such as small proteins and peptides and have been used in development of subunit vaccines via display parts of viral pathogens or antigens. Such subunit vaccines are much safer than traditional vaccines based on inactivated pathogens which are more likely to produce side-effects. Therefore, to tackle a pandemic and rapidly produce safer and more effective subunit vaccines based on protein assemblies, it is necessary to understand the basic structural features which drive protein self-assembly and functionalization of portions of pathogens. This review highlights recent developments and future perspectives in production of non-viral protein assemblies with essential structural features of subunit vaccines.  相似文献   
7.
WO3 is a potential material candidate for construction of photoanode for solar driven water splitting. In this work, μm-thick porous WO3 photoanode is prepared by depositing a stable ink made of WO3 nanoparticles and Aristoflex velvet polymer in water using the doctor blade technique, followed by a sintering in air. The nature of WO3 nanoparticles, its loading mass on F-doped tin oxide electrode as well as sintering temperature are examined in order to optimize the photocatalytic activity of the resultant WO3 photoanode. The operation of WO3 photoanode is investigated by varying the light illumination direction and light incident intensity as well as changing the nature of the electrolyte. Dissolved tungsten in electrolyte is quantified by ICP-MS providing insights into the influences of electrolyte nature and operating conditions to the corrosion of WO3. It is proposed that the H2O2 and OH. radical generated as by-products of the photo-driven water oxidation on the photoanode surface are harmful species that accelerate the dissolution of WO3.  相似文献   
8.
In this study, we examined the dependence of surface morphology and spin Seebeck effect (SSE) voltages on the poly[vinylpyrrolidone] (PVP) concentration in polycrystalline Y3Fe5O12 (YIG) ultrathin films on a silicon substrate synthesized by metal-organic decomposition followed by a crystallization process. During fabrication, PVP concentrations of 0.5–2 g were used while all other conditions remained fixed. Atomic force microscopy and grazing incidence X-ray diffraction (XRD) measurements revealed a strong dependence of crystallinity and sample morphology on PVP concentration. The 1-g PVP sample had the smoothest surface, with a root mean square roughness of 0.2 nm, as well as superior bulk uniformity with respect to the shape and intensity of XRD reflection peaks. This was confirmed by scanning electron microscopy measurements of a cross-section of the sample that revealed a uniform film without pores. SSE measurements were performed to obtain the output SSE voltages (VSSE) of all samples, to which a platinum layer was added as a spin-detection layer. Repeatedly, the 1-g PVP sample had the best performance, demonstrating the importance of film crystallinity and morphology in the spin-to-charge conversion efficiency of YIG films.  相似文献   
9.
Structure modification has been found to tune significantly the transparent-conducting performance, especially mobility and conductivity of hydrogenated Ga-doped ZnO (HGZO) films. The strong correlation between film thickness and mobility of the films is revealed. The mobility increases quickly with increasing the thickness from 350 to 900 nm, and then tends to be saturated at further thicknesses. A higher mobility than 50 cm2/Vs can be achieved, which is an extra-high value for polycrystalline ZnO films deposited by using the sputtering technique. The thickness-dependent mobility originates from scatterings on grain boundaries and dislocation-induced defects controlled by thin-film growth. Based on the Volmer-Weber model, an expansion model is built up to describe the thickness-dependent crystal growth of the HGZO films, especially at the thick films. As a result, the 800 nm-thick HGZO film obtains the highest performance with high mobility of 51.5 cm2/Vs, low resistivity of 5.3 × 10?4 Ωcm, and good transmittance of 83.3 %.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号