首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   4篇
工业技术   93篇
  2023年   1篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2018年   7篇
  2017年   1篇
  2016年   4篇
  2015年   2篇
  2014年   2篇
  2013年   10篇
  2012年   5篇
  2011年   9篇
  2010年   6篇
  2009年   1篇
  2008年   7篇
  2007年   2篇
  2006年   3篇
  2005年   5篇
  2004年   2篇
  2002年   1篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1993年   2篇
  1992年   1篇
  1987年   1篇
  1983年   1篇
  1980年   1篇
  1974年   1篇
排序方式: 共有93条查询结果,搜索用时 78 毫秒
1.
2.
Magnesium (Mg)-based nanocomposites owing to their low density and biocompatibility are being targeted for transportation and biomedical sectors. In order to support a sustainable environment, the prime aim of this study was to develop non-toxic magnesium-based nanocomposites for a wide spectrum of applications. To support this objective, cerium oxide nanoparticles (0.5?vol%, 1?vol%, and 1.5?vol%) reinforced Mg composites are developed in this study using blend-press-sinter powder metallurgy technique. The microstructural studies exhibited limited amounts of porosity in Mg and Mg-CeO2 samples (< 1%). Increasing presence of CeO2 nanoparticles (up to 1.5?vol%) led to a progressive increase in microhardness, dimensional stability, damping capacity and ignition resistance of magnesium. The compressive strengths increased with the increasing addition of the nanoparticles with a significant enhancement in the fracture strain (up to ~48%). Superior energy absorption was observed for all the composite samples prior to compressive fracture. Further, enhancement in thermal, mechanical and damping characteristics of pure Mg is correlated with microstructural changes due to the presence of the CeO2 nanoparticles.  相似文献   
3.
4.
With the ban of tributyltin, copper‐based biocides are now widely used in antifouling coatings as the major active ingredients. Given the past experience of heavy‐metal accumulation in harbors with limited water exchange, there is a significant interest in developing copper materials that greatly reduce the amount of copper ions released into marine surroundings. In this paper, copper nanowires (NWs) encapsulated in polymer matrices are investigated as the means to control the release of copper ions and to achieve a long‐lasting antifouling effect. Very long CuNWs with high aspect ratio in organic solution are drop‐coated onto substrates to fabricate uniform thin films. They are then incorporated into an elastomeric polydimethylsiloxane (PDMS) matrix. A small amount of CuNWs in PDMS can inhibit barnacle cyprid settlement, while it exhibits low mortality to cyprids and nauplii present in the surrounding seawater environment. The low levels of copper released after 50 days suggest that the intersecting and interconnected CuNWs embedded in PDMS could potentially release copper ions continuously over a few years in seawater. This approach provides a novel platform to use hybrid materials as effective marine antifouling coatings, and may be applied to fouling release materials to enhance their antifouling properties.  相似文献   
5.
Vertically-aligned multi-walled carbon nanotubes (CNTs) were grown on stainless steel (SS) mesh by thermal chemical vapor deposition with a diffusion barrier of Al2O3 film. These three-dimensional porous structures (SS-CNT meshes) were found to be superhydrophobic and superoleophilic. Water advancing contact angles of 145–150° were determined for these SS-CNT meshes in air and oil (gasoline, isooctane). Oil, on the other hand, completely wet the SS-CNT meshes. This combined superhydrophobic and superoleophilic property repelled water while allowed the permeation of oil. Filtration tests demonstrated efficiencies better than 80% of these SS-CNT meshes as the filtration membranes of the water-in-oil emulsions. We have conducted quantitative analysis on the diameters of the oil droplets in both the feed emulsion and the filtrate. Then, we have evaluated the issue of water blockage and possible way to improve the filtration efficiency. Finally, the filtration and blockage mechanisms are proposed.  相似文献   
6.
The detailed flow structures in bubble columns with and without internal draught tube have been investigated using the PIV technique. The onsets of transition due to vortex formation and different flow patterns with and without draught tube have been studied using the drift‐flux model and the experimentally measured Reynolds stresses. The role of solid particles and liquid viscosity, as well as bubbling orifice configuration on the flow patterns and regime transition has also been studied and discussed.  相似文献   
7.
This study determined whether retinal degeneration during diabetes includes retinal neural cell apoptosis. Image analysis of retinal sections from streptozotocin (STZ) diabetic rats after 7.5 months of STZ diabetes identified 22% and 14% reductions in the thickness of the inner plexiform and inner nuclear layers, respectively (P < 0. 001). The number of surviving ganglion cells was also reduced by 10% compared to controls (P < 0.001). In situ end labeling of DNA terminal dUTP nick end labeling (TUNEL) identified a 10-fold increase in the frequency of retinal apoptosis in whole-mounted rat retinas after 1, 3, 6, and 12 months of diabetes (P < 0.001, P < 0. 001, P < 0.01, and P < 0.01, respectively). Most TUNEL-positive cells were not associated with blood vessels and did not colocalize with the endothelial cell-specific antigen, von Willebrand factor. Insulin implants significantly reduced the number of TUNEL-positive cells (P < 0.05). The number of TUNEL-positive cells was also increased in retinas from humans with diabetes. These data indicate that retinal neural cell death occurs early in diabetes. This is the first quantitative report of an increase in neural cell apoptosis in the retina during diabetes, and indicates that neurodegeneration is an important component of diabetic retinopathy.  相似文献   
8.
This paper reviews studies on the basic principles of biostimulation of wound healing by various low-energy lasers. It looks at the mechanism of action of biostimulation as well as the laser's effect on cell proliferation, collagen synthesis, and would healing.  相似文献   
9.
10.
Using a derivative of the plasmid pBR322 we have tested the dimer catastrophe hypothesis of plasmid instability. Most of the theory was confirmed by our observations, but our data suggest that some of the quantitative aspects need modification. In a recF strain of Escherichia coli we estimated the difference in loss rate between the plasmid in the monomeric and the dimeric state to be a factor of 13-14 and the difference in the loss rate between the plasmid in the monomeric and the trimeric state to be a factor of 14-50. We were able to confirm that plasmid oligomers were heterogeneously distributed within a rec+ population, but we were unable to detect any pronounced difference in the level of growth inhibition exerted by the plasmid when in the monomeric, dimeric, or trimeric state. This leaves open the question as to whether runaway plasmid multimerization was prevented (i) by a small correlation between the inhibition of growth and the 'multimeric status' of the plasmid, (ii) by intramolecular homologous recombination, or (iii) whether the process of runaway multimerization is too slow to be recognized within the duration of the experiments, i.e. 200 generations of growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号