首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   2篇
工业技术   74篇
  2021年   5篇
  2020年   2篇
  2019年   5篇
  2017年   1篇
  2016年   4篇
  2015年   3篇
  2014年   1篇
  2013年   3篇
  2012年   10篇
  2011年   13篇
  2010年   4篇
  2009年   2篇
  2008年   6篇
  2007年   1篇
  2006年   7篇
  2005年   4篇
  1999年   1篇
  1995年   1篇
  1990年   1篇
排序方式: 共有74条查询结果,搜索用时 15 毫秒
1.
Pavić  Ivan  Džapo  Hrvoje 《Real-Time Systems》2020,56(1):112-119
Real-Time Systems - In this paper we point to some errors in recent paper by Asyaban et al. in which they devise an exact schedulability test. These errors are critical for the correct operation of...  相似文献   
2.
Ammonia appears to be a potential alternative fuel that can be used as a hydrogen vector and fuel for gas turbines and internal combustion engines. Chemical mechanisms of ammonia combustion are important for the development of ammonia combustion systems, but also as a mean of investigation of harmful NOx emissions, so they can be minimized. Despite of large body of experimental and modelling work on the topic of ammonia combustion, there is still need for additional investigation of combustion kinetics.The object of this work is further numerical study of ammonia combustion chemistry under conditions resembling industrial ones. After literature review, three mechanisms of ammonia combustion that also include carbon chemistry are used for simulation of experimental premixed swirl burner with the aim of evaluating their performance. San Diego mechanism, that was also the most detailed one, proved to be the best in terms of emissions, but neither one of the models was able to accurately reproduce CO emission after equivalence ratio went beyond 0.81. It was also observed that oxygen is excessively consumed. This study contributes to the current knowledge by providing new insights in ammonia burning conditions closely resembling those in industrial applications, and consequently is expected that insights obtained will help in the design of real industrial burning systems.  相似文献   
3.
This paper proposes a numerical procedure that can predict the minimum duration of a rectangular, half-cycle sine wave, linearly increasing and triangular single-pulse excitation required to overturn the rigid block resting on a moving base. Since the linearization assumption in the derivation of an analytical solution, which has already been used by Housner and other researchers, cannot be valid for a block with various slenderness ratios and dimensions, a derivation of numerical solutions which would be valid for all types of block is necessary. The proposed numerical procedure takes into account the possibility of sliding and uplifting of the block from the base. The numerical algorithm for the proposed numerical procedure in a commercial code C++ is given in the “Appendix.”  相似文献   
4.
Calcination is a thermo-chemical process, widely used in the cement industry, where limestone is converted by thermal decomposition into lime CaO and carbon dioxide CO2. The focus of this paper is on the implementation and validation of the endothermic calcination reaction mechanism of limestone in a commercial finite volume based CFD code. This code is used to simulate the turbulent flow field, the temperature field, concentrations of the reactants and products, as well as the interaction of particles with the gas phase, by solving the mathematical equations, which govern these processes. For calcination, the effects of temperature, decomposition pressure, diffusion and pore efficiency were taken into account. A simple three-dimensional geometry of a pipe reactor was used for numerical simulations. To verify the accuracy of the modelling approach, the numerical predictions were compared with experimental data, yielding satisfying results and proper trends of physical parameters influencing the process.  相似文献   
5.
Flood disasters are the most common natural risk and tremendous efforts are spent to improve their simulation and management. However, simulation-based investigation of actions that can be taken in case of flood emergencies is rarely done. This is in part due to the lack of a comprehensive framework which integrates and facilitates these efforts. In this paper, we tackle several problems which are related to steering a flood simulation. One issue is related to uncertainty. We need to account for uncertain knowledge about the environment, such as levee-breach locations. Furthermore, the steering process has to reveal how these uncertainties in the boundary conditions affect the confidence in the simulation outcome. Another important problem is that the simulation setup is often hidden in a black-box. We expose system internals and show that simulation steering can be comprehensible at the same time. This is important because the domain expert needs to be able to modify the simulation setup in order to include local knowledge and experience. In the proposed solution, users steer parameter studies through the World Lines interface to account for input uncertainties. The transport of steering information to the underlying data-flow components is handled by a novel meta-flow. The meta-flow is an extension to a standard data-flow network, comprising additional nodes and ropes to abstract parameter control. The meta-flow has a visual representation to inform the user about which control operations happen. Finally, we present the idea to use the data-flow diagram itself for visualizing steering information and simulation results. We discuss a case-study in collaboration with a domain expert who proposes different actions to protect a virtual city from imminent flooding. The key to choosing the best response strategy is the ability to compare different regions of the parameter space while retaining an understanding of what is happening inside the data-flow system.  相似文献   
6.
Electronic and optical properties of molecules and molecular solids are traditionally considered from the perspective of the frontier orbitals and their intermolecular interactions. How molecules condense into crystalline solids, however, is mainly attributed to the long-range polarization interaction. In this Account, we show that long-range polarization also introduces a distinctive set of diffuse molecular electronic states, which in quantum structures or solids can combine into nearly-free-electron (NFE) bands. These NFE properties, which are usually associated with good metals, are vividly evident in sp(2) hybridized carbon materials, specifically graphene and its derivatives. The polarization interaction is primarily manifested in the screening of an external charge at a solid/vacuum interface. It is responsible for the universal image potential and the associated unoccupied image potential (IP) states, which are observed even at the He liquid/vacuum interface. The molecular electronic properties that we describe are derived from the IP states of graphene, which float above and below the molecular plane and undergo free motion parallel to it. Rolling or wrapping a graphene sheet into a nanotube or a fullerene transforms the IP states into diffuse atom-like orbitals that are bound primarily to hollow molecular cores, rather than the component atoms. Therefore, we named them the superatom molecular orbitals (SAMOs). Like the excitonic states of semiconductor nanostructures or the plasmonic resonances of metallic nanoparticles, SAMOs of fullerene molecules, separated by their van der Waals distance, can combine to form diatomic molecule-like orbitals of C(60) dimers. For larger aggregates, they form NFE bands of superatomic quantum structures and solids. The overlap of the diffuse SAMO wavefunctions in van der Waals solids provides a different paradigm for band formation than the valence or conduction bands formed by interaction of the more tightly bound, directional highest occupied molecular orbitals (HOMOs) or the lowest unoccupied molecular orbitals (LUMOs). Therefore, SAMO wavefunctions provide insights into the design of molecular materials with potentially superior properties for electronics. Physicists and chemists have thought of fullerenes as atom-like building blocks of electronic materials, and superatom properties have been attributed to other elemental gas-phase clusters based on their size-dependent electronic structure and reactivity. Only in the case of fullerenes, however, do the superatom properties survive as delocalized electronic bands even in the condensed phase. We emphasize, however, that the superatom states and their bands are usually unoccupied and therefore do not contribute to intermolecular bonding. Instead, their significance lies in the electronic properties they confer when electrons are introduced, such as when they are excited optically or probed by the atomically sharp tip of a scanning tunneling microscope. We describe the IP states of graphene as the primary manifestation of the universal polarization response of a molecular sheet and how these states in turn define the NFE properties of materials derived from graphene, such as graphite, fullerenes, and nanotubes. Through low-temperature scanning tunneling microscopy (LT-STM), time-resolved two-photon photoemission spectroscopy (TR-2PP), and density functional theory (DFT), we describe the real and reciprocal space electronic properties of SAMOs for single C(60) molecules and their self-assembled 1D and 2D quantum structures on single-crystal metal surfaces.  相似文献   
7.
In the present study we determine the optical parameters of thin metal-dielectric films using two different characterization techniques based on nonparametric and multiple oscillator models. We consider four series of thin metal-dielectric films produced under various deposition conditions with different optical properties. We compare characterization results obtained by nonparametric and multiple oscillator techniques and demonstrate that the results are consistent. The consistency of the results proves their reliability.  相似文献   
8.
World lines     
In this paper we present World Lines as a novel interactive visualization that provides complete control over multiple heterogeneous simulation runs. In many application areas, decisions can only be made by exploring alternative scenarios. The goal of the suggested approach is to support users in this decision making process. In this setting, the data domain is extended to a set of alternative worlds where only one outcome will actually happen. World Lines integrate simulation, visualization and computational steering into a single unified system that is capable of dealing with the extended solution space. World Lines represent simulation runs as causally connected tracks that share a common time axis. This setup enables users to interfere and add new information quickly. A World Line is introduced as a visual combination of user events and their effects in order to present a possible future. To quickly find the most attractive outcome, we suggest World Lines as the governing component in a system of multiple linked views and a simulation component. World Lines employ linking and brushing to enable comparative visual analysis of multiple simulations in linked views. Analysis results can be mapped to various visual variables that World Lines provide in order to highlight the most compelling solutions. To demonstrate this technique we present a flooding scenario and show the usefulness of the integrated approach to support informed decision making.  相似文献   
9.
Kubo A  Pontius N  Petek H 《Nano letters》2007,7(2):470-475
A movie of the dispersive and dissipative propagation of surface plasmon polariton (SPP) wave packets at a silver/vacuum interface is recorded by the interferometric time-resolved photoemission electron microscopy with 60 nm spatial resolution and 330 as frame interval. The evolution of SPP wave packets is imaged through a two-path interference created by a pair of 10 fs phase correlated pump-probe light pulses at 400 nm. The wave packet evolution is simulated using the complex dielectric function of silver.  相似文献   
10.
This paper discusses current status and recent advancements of 3D graphics on mobile platforms and describes open issues concerning its usage in different applications. We have treated two particular application fields. Firstly, we deal with problems of visualization of complex data structures on mobile devices. The implementation of a 3D visualization renderer on the Symbian platform for mobile devices is written as a C++ application and based on the DieselEngine® as a rendering engine. 3D visualization of data is generated in the form of a Virtual Reality Modelling Language (VRML) file meaning that actually any kind of 3D content written in VRML file format can be rendered on such a device. It was the result of a project the objective of which was to provide a user interface on a mobile platform displaying visualization of hierarchical Grid monitoring data. Secondly, we describe the system that brings face animation to embedded platforms. Face animation is considered to be one of the toughest tasks in computer animation today and its delivery to mobile platforms brings possibilities for development of new innovative and attractive services for the mobile market.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号