首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8430篇
  免费   410篇
  国内免费   27篇
工业技术   8867篇
  2021年   149篇
  2020年   116篇
  2019年   131篇
  2018年   160篇
  2017年   147篇
  2016年   177篇
  2015年   173篇
  2014年   224篇
  2013年   627篇
  2012年   398篇
  2011年   414篇
  2010年   342篇
  2009年   356篇
  2008年   388篇
  2007年   377篇
  2006年   311篇
  2005年   281篇
  2004年   242篇
  2003年   233篇
  2002年   238篇
  2001年   149篇
  2000年   151篇
  1999年   169篇
  1998年   168篇
  1997年   135篇
  1996年   124篇
  1995年   111篇
  1994年   99篇
  1993年   107篇
  1992年   98篇
  1991年   69篇
  1990年   83篇
  1989年   96篇
  1988年   74篇
  1987年   94篇
  1986年   87篇
  1985年   105篇
  1984年   119篇
  1983年   95篇
  1982年   79篇
  1981年   91篇
  1980年   66篇
  1979年   99篇
  1978年   71篇
  1977年   81篇
  1976年   58篇
  1975年   65篇
  1974年   59篇
  1973年   75篇
  1972年   54篇
排序方式: 共有8867条查询结果,搜索用时 46 毫秒
1.
2.
Endoplasmic reticulum (ER) stress response is an adaptive program to cope with cellular stress that disturbs the function and homeostasis of ER, which commonly occurs during cancer progression to late stage. Late-stage cancers, mostly requiring chemotherapy, often develop treatment resistance. Chemoresistance has been linked to ER stress response; however, most of the evidence has come from studies that correlate the expression of stress markers with poor prognosis or demonstrate proapoptosis by the knockdown of stress-responsive genes. Since ER stress in cancers usually persists and is essentially not induced by genetic manipulations, we used low doses of ER stress inducers at levels that allowed cell adaptation to occur in order to investigate the effect of stress response on chemoresistance. We found that prolonged tolerable ER stress promotes mesenchymal–epithelial transition, slows cell-cycle progression, and delays the S-phase exit. Consequently, cisplatin-induced apoptosis was significantly decreased in stress-adapted cells, implying their acquisition of cisplatin resistance. Molecularly, we found that proliferating cell nuclear antigen (PCNA) ubiquitination and the expression of polymerase η, the main polymerase responsible for translesion synthesis across cisplatin-DNA damage, were up-regulated in ER stress-adaptive cells, and their enhanced cisplatin resistance was abrogated by the knockout of polymerase η. We also found that a fraction of p53 in stress-adapted cells was translocated to the nucleus, and that these cells exhibited a significant decline in the level of cisplatin-DNA damage. Consistently, we showed that the nuclear p53 coincided with strong positivity of glucose-related protein 78 (GRP78) on immunostaining of clinical biopsies, and the cisplatin-based chemotherapy was less effective for patients with high levels of ER stress. Taken together, this study uncovers that adaptation to ER stress enhances DNA repair and damage tolerance, with which stressed cells gain resistance to chemotherapeutics.  相似文献   
3.
Abstract

Industry 4.0 aims at providing a digital representation of a production landscape, but the challenges in building, maintaining, optimizing, and evolving digital models in inter-organizational production chains have not been identified yet in a systematic manner. In this paper, various Industry 4.0 research and technical challenges are addressed, and their present scenario is discussed. Moreover, in this article, the novel concept of developing experience-based virtual models of engineering entities, process, and the factory is presented. These models of production units, processes, and procedures are accomplished by virtual engineering object (VEO), virtual engineering process (VEP), and virtual engineering factory (VEF), using the knowledge representation technique of Decisional DNA. This blend of the virtual and physical domains permits monitoring of systems and analysis of data to foresee problems before they occur, develop new opportunities, prevent downtime, and even plan for the future by using simulations. Furthermore, the proposed virtual model concept not only has the capability of Query Processing and Data Integration for Industrial Data but also real-time visualization of data stream processing.  相似文献   
4.
We investigate the challenges of building an end-to-end cloud pipeline for real-time intelligent visual inspection system for use in automotive manufacturing. Current methods of visual detection in automotive assembly are highly labor intensive, and thus prone to errors. An automated process is sought that can operate within the real-time constraints of the assembly line and can reduce errors. Components of the cloud pipeline include capture of a large set of high-definition images from a camera setup at the assembly location, transfer and storage of the images as needed, execution of object detection, and notification to a human operator when a fault is detected. The end-to-end execution must complete within a fixed time frame before the next car arrives in the assembly line. In this article, we report the design, development, and experimental evaluation of the tradeoffs of performance, accuracy, and scalability for a cloud system.  相似文献   
5.
Cases of isolated hepatic tuberculosis (TB) are rare. The diagnosis is often delayed or missed because of nonspecific symptoms and laboratory findings. Besides, the disease is extremely rare even in a country where TB is an alarming public health problem. This report demonstrates the difficulty in correctly diagnosing local hepatic TB. We report the case of a 62‐year‐old male patient with end‐stage renal disease treated with hemodialysis, who developed 2 months of abdominal distension and general anorexia, with hyperechoic hepatic lesions on ultrasound. Computed tomography suspected multiple liver tumors. The liver biopsy finally led to the diagnosis of TB of the liver without other involvements. We conclude that isolated hepatic TB is one of the rare forms of extrapulmonary TB in dialysis patients. A greater awareness of this rare clinical entity may prevent needless surgical interventions.  相似文献   
6.
7.
This work aims to clarify the photocatalytic degradation mechanism and heat reflectance recovery performance of waterborne acrylic polymer/ZnO nanocomposite coating. To fabricate the nanocomposite coating, ZnO nanoparticles (nano-ZnO) were dispersed into acrylic polymer matrix at the various concentrations from 1 to 6% (by total weight of resin solids). The photocatalytic degradation of nanocomposite coating under ultraviolet (UV) light irradiation has been investigated by monitoring its weight loss and chemical/microstructural/morphological changes. As the topcoat layer, its heat reflectance recovery has been evaluated under UV/condensation exposure by using an artificial dirty mixture of 85 wt% nanoclay, 10 wt% silica particles (1–5 μm), 1 wt% carbon black, and 2 wt% engine oil. After 108-cycle UV/condensation exposure, infrared spectra and weight loss analysis indicated that the maximal degradation for nanocomposite coating is observed at 1 wt% nano-ZnO. On the other hand, after 96 hr of UV light exposure, the nanocomposite coating with1 wt% nano-ZnO could restore effectively the reflective index of solar-heat reflectance coating (from 58.45 to 80.78%). Finally, the photodegradation mechanism of this waterborne acrylic polymer coating has been proposed as the UV-induced formation of CC CO conjugated double bonds. As a result, its self-cleaning phenomenon can be achieved as the recovery of heat reflectance.  相似文献   
8.
In recent years, there has been rapid expansion of glycan synthesis, fueled by the recognition that the structural complexity of sugars translates to a myriad of biological functions. Such chemical syntheses involve many challenges, mostly due to the regio- and stereochemical aspects of glycosidic bond formation. One-pot strategies were developed to assist in attaining faster and more economical access to the glycan constructs. In this front, achievements in protecting group manipulation, glycosylation, and combinations of these have been reported. Protecting group manipulations in one pot take advantage of the reaction compatibility of commonly used transformations, many of which occur in high regioselectivity. Sequential glycosylations, on the other hand, rely on leaving group orthogonalities and reactivity tuning, as well as the preactivation technique. Altogether, these approaches offer attractive means to the much needed glycan structures and, consequently, help usher in advances in glycoscience.  相似文献   
9.
10.
Passive permeability is a key property in drug disposition and delivery. It is critical for gastrointestinal absorption, brain penetration, renal reabsorption, defining clearance mechanisms and drug-drug interactions. Passive diffusion rate is translatable across tissues and animal species, while the extent of absorption is dependent on drug properties, as well as in vivo physiology/pathophysiology. Design principles have been developed to guide medicinal chemistry to enhance absorption, which combine the balance of aqueous solubility, permeability and the sometimes unfavorable compound characteristic demanded by the target. Permeability assays have been implemented that enable rapid development of structure-permeability relationships for absorption improvement. Future advances in assay development to reduce nonspecific binding and improve mass balance will enable more accurately measurement of passive permeability. Design principles that integrate potency, selectivity, passive permeability and other ADMET properties facilitate rapid advancement of successful drug candidates to patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号