首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycosylation of surface molecules is a key feature of several eukaryotic viruses, which use the host endoplasmic reticulum/Golgi apparatus to add carbohydrates to their nascent glycoproteins. In recent years, a newly discovered group of eukaryotic viruses, belonging to the Nucleo-Cytoplasmic Large DNA Virus (NCLDV) group, was shown to have several features that are typical of cellular organisms, including the presence of components of the glycosylation machinery. Starting from initial observations with the chlorovirus PBCV-1, enzymes for glycan biosynthesis have been later identified in other viruses; in particular in members of the Mimiviridae family. They include both the glycosyltransferases and other carbohydrate-modifying enzymes and the pathways for the biosynthesis of the rare monosaccharides that are found in the viral glycan structures. These findings, together with genome analysis of the newly-identified giant DNA viruses, indicate that the presence of glycogenes is widespread in several NCLDV families. The identification of autonomous viral glycosylation machinery leads to many questions about the origin of these pathways, the mechanisms of glycan production, and eventually their function in the viral replication cycle. The scope of this review is to highlight some of the recent results that have been obtained on the glycosylation systems of the large DNA viruses, with a special focus on the enzymes involved in nucleotide-sugar production.  相似文献   

2.
The HIV envelope (Env) is heavily glycosylated, facilitating the spread and survival of HIV in many ways. Some potent broadly neutralizing antibodies (bnAbs) such as 2G12, PG9, PG16, and PGTs can recognize the conserved glycan residues on Env. The bnAbs, which often emerge after many years of chronic infection, provide insight into the vulnerability of HIV and can therefore guide the design of vaccines. Many carbohydrate‐conjugated vaccines have been designed to induce bnAb‐like antibodies, but none have yet been successful. The low antigenicity of these vaccines is one possible explanation. New strategies have been applied to obtain high‐affinity antigens of glycan‐dependent and other bnAbs. However, when used as immunogens in vivo, high‐affinity antigens are still insufficient in eliciting bnAb‐like antibodies. bnAbs generally possess some unusual features and may therefore be suppressed by the host immune system. In view of this situation, some immunization regimens based on the affinity maturation of antibodies have been tested. Herein we summarize recent studies into the design of carbohydrate‐based HIV vaccines and some valuable experiences gained in work with other bnAb‐based HIV vaccines.  相似文献   

3.
Sialic acid (Sia) is considered as one of the most important biomolecules of life since its derivatives and terminal orientations on cell membranes and macromolecules play a major role in many biological and pathological processes. To date, there is only a limited number of active molecules that can selectively bind to Sia and this limitation has made the study of this glycan challenging. The lectin superfamily is a well-known family of glycan binding proteins, which encompasses many strong glycan binding peptides with diverse glycan affinities. Mistletoe lectin (ML) is considered one of the most active members of lectin family which was initially classified in early studies as a galactose binding lectin; more recent studies have suggested that the peptide can also actively bind to Sia. However, the details with respect to Sia binding of ML and the domain responsible for this binding are left unanswered because no comprehensive studies have been instigated. In this study, we sought to identify the binding domain responsible for the sialic acid affinity of mistletoe lectin isoform I (MLI) in comparison to the binding activity of elderberry lectin isoform I (SNA), which has long been identified as a potent Sia binding lectin. In order to execute this, we performed computational carbohydrate-protein docking for MLB and SNA with Neu5Ac and β-Galactose. We further analyzed the coding sequence of both lectins and identified their glycan binding domains, which were later cloned upstream and downstream to green fluorescent protein (GFP) and expressed in Escherichia coli (E. coli). Finally, the glycan affinity of the expressed fusion proteins was assessed by using different biochemical and cell-based assays and the Sia binding domains were identified.  相似文献   

4.
The synthesis of defined oligosaccharides is a complex task. Several enabling technologies have been introduced in the last two decades to facilitate synthetic access to these valuable biomolecules. In this concept, we describe the technological solutions that have advanced glycochemistry using automated glycan assembly, flow chemistry and data science as examples. We highlight how the synergies between these different technologies can further advance the field, with progress toward the realization of a self-driving lab for glycan synthesis.  相似文献   

5.
Glycosylation is one of the most common post-translational modifications in eukaryotic cells and plays important roles in many biological processes, such as the immune response and protein quality control systems. It has been notoriously difficult to study glycoproteins by X-ray crystallography since the glycan moieties usually have a heterogeneous chemical structure and conformation, and are often mobile. Nonetheless, recent technical advances in glycoprotein crystallography have accelerated the accumulation of 3D structural information. Statistical analysis of "snapshots" of glycoproteins can provide clues to understanding their structural and dynamic aspects. In this review, we provide an overview of crystallographic analyses of glycoproteins, in which electron density of the glycan moiety is clearly observed. These well-defined N-glycan structures are in most cases attributed to carbohydrate-protein and/or carbohydrate-carbohydrate interactions and may function as "molecular glue" to help stabilize inter- and intra-molecular interactions. However, the more mobile N-glycans on cell surface receptors, the electron density of which is usually missing on X-ray crystallography, seem to guide the partner ligand to its binding site and prevent irregular protein aggregation by covering oligomerization sites away from the ligand-binding site.  相似文献   

6.
Carbohydrates play a pivotal role in intercellular communication processes. In particular, glycan antigens are key for sustaining homeostasis, helping leukocytes to distinguish damaged tissues and invading pathogens from healthy tissues. From a structural perspective, this cross-talk is fairly complex, and multiple membrane proteins guide these recognition processes, including lectins and Toll-like receptors. Since the beginning of this century, lectins have become potential targets for therapeutics for controlling and/or avoiding the progression of pathologies derived from an incorrect immune outcome, including infectious processes, cancer, or autoimmune diseases. Therefore, a detailed knowledge of these receptors is mandatory for the development of specific treatments. In this review, we summarize the current knowledge about four key C-type lectins whose importance has been steadily growing in recent years, focusing in particular on how glycan recognition takes place at the molecular level, but also looking at recent progresses in the quest for therapeutics.  相似文献   

7.
Glycans have diverse functions and play vital roles in many biological systems, such as influenza, vaccines, and cancer biomarkers. However, full structural identification of glycans remains challenging. The glycan structure was conventionally determined by chemical methods or NMR spectroscopy, which require a large amount of sample and are not readily applicable for glycans extracted from biological samples. Although it has high sensitivity and is widely used for structural determination of molecules, current mass spectrometry can only reveal parts of the glycan structure. Herein, the full structures of glycans, including diastereomers, the anomericity of each monosaccharide, and the linkage position of each glycosidic bond, which can be determined by using tandem mass spectrometry guided by a logically derived sequence (LODES), are shown. This new method provides de novo oligosaccharide structural identification with high sensitivity and has been applied to automatic in situ structural determination of oligosaccharides eluted by means of HPLC. It is shown that the structure of a given trisaccharide from a trisaccharide mixture and bovine milk were determined from nearly 3000 isomers by using 6–7 logically selected collision-induced dissociation spectra. The entire procedure for mass spectrometry measurement guided by LODES can be programmed in a computer for automatic full glycan structure identification.  相似文献   

8.
Compared with in vitro conditions, the intracellular environment is highly crowded with biomolecules; this has numerous effects on protein functions, including enzymatic activity. We examined the effects of macromolecular crowding on glycan processing of N‐glycoprotein in the endoplasmic reticulum as a model sequential metabolic pathway. Experiments with synthetic substrates of physiological glycan structure clearly showed that the first half of the pathway (glucose trimming) was accelerated, whereas the second (mannose trimming) was decelerated under molecular crowding conditions. Furthermore, calreticulin, a lectin‐like molecular chaperone, bound more strongly to a glycan‐processing intermediate under these conditions. This study demonstrates the diverse effects of molecular crowding on sequential enzymatic processing, and the importance of the effects of macromolecular crowding on in vitro assays for understanding sequential metabolic pathways.  相似文献   

9.
10.
The cell membrane regulates the exchange of molecules and information with the external environment. However, this control barrier hinders the delivery of exogenous bioactive molecules that can be applied to correct cellular malfunctions. Therefore, the traffic of macromolecules across the cell membrane represents a great challenge for the development of the next generation of therapies and diagnostic methods. Cell-penetrating peptides are short peptide sequences capable of delivering a broad range of biomacromolecules across the cellular membrane. However, penetrating peptides still suffer from limitations, mainly related to their lack of specificity and potential toxicity. Glycosylation has emerged as a potential promising strategy for the biological improvement of synthetic materials. In this work we have developed a new convergent strategy for the synthesis of penetrating peptides functionalized with glycan residues by an oxime bond connection. The uptake efficiency and intracellular distribution of these glycopeptides have been systematically characterized by means of flow cytometry and confocal microscopy and in zebrafish animal models. The incorporation of these glycan residues into the peptide structure influenced the internalization efficiency and cellular toxicity of the resulting glycopeptide hybrids in the different cell lines tested. The results reported herein highlight the potential of the glycosylation of penetrating peptides to modulate their activity.  相似文献   

11.
Arsenic exposure results in several human cancers, including those of the skin, lung, and bladder. As skin cancers are the most common form, epidermal keratinocytes (KC) are the main target of arsenic exposure. The mechanisms by which arsenic induces carcinogenesis remains unclear, but aberrant cell proliferation and dysregulated energy homeostasis play a significant role. Protein glycosylation is involved in many key physiological processes, including cell proliferation and differentiation. To evaluate whether arsenite exposure affected protein glycosylation, the alteration of chain length of glycan residues in arsenite treated skin cells was estimated. Herein we demonstrated that the protein glycosylation was adenosine triphosphate (ATP)-dependent and regulated by arsenite exposure by using Fourier transform infrared (FTIR) reflectance spectroscopy, synchrotron-radiation-based FTIR (SR-FTIR) microspectroscopy, and wax physisorption kinetics coupled with focal-plane-array-based FTIR (WPK-FPA-FTIR) imaging. We were able to estimate the relative length of surface protein-linked glycan residues on arsenite-treated skin cells, including primary KC and two skin cancer cell lines, HSC-1 and HaCaT cells. Differential physisorption of wax adsorbents adhered to long-chain (elongated type) and short-chain (regular type) glycan residues of glycoprotein of skin cell samples treated with various concentration of arsenite was measured. The physisorption ratio of beeswax remain/n-pentacosane remain for KC cells was increased during arsenite exposure. Interestingly, this increase was reversed after oligomycin (an ATP synthase inhibitor) pretreatment, suggesting the chain length of protein-linked glycan residues is likely ATP-dependent. This is the first study to demonstrate the elongation and termination of surface protein-linked glycan residues using WPK-FPA-FTIR imaging in eukaryotes. Herein the result may provide a scientific basis to target surface protein-linked glycan residues in the process of arsenic carcinogenesis.  相似文献   

12.
金翔  范爱民  郑建华 《上海化工》2004,29(10):16-19
传统的丙烯脱水工艺存在能耗高、丙烯浪费大、再生氦器气用量大等缺点。蒸汽渗透技术具有能耗低、过程简单、分离因子高、操作灵活等优点,而且它的渗透通量较低,这使得它特别适用于微量可凝组分的分离。本研究以脱除丙烯中微量水分为目的,以聚乙烯醇、壳聚糖为复合膜活性层,聚砜中空纤维膜为支撑层,制备出多种中空纤维复合膜。考察制膜条件及实验操作条件对膜性能的影响。  相似文献   

13.
Dolichols are polyisoprenoid lipid components of mammalian membranes consisting of an average of 20 head-to-tail linked isoprene units of which the first isoprene is fully saturated. The unusual size of these lipids is intriguing and poses questions about the role of dolichol structure in biological processes. In order to probe structure and function we have synthesised potential dolichyl analogues that retain only the first two isoprene units and carry a second functional group within the terminal lipid chain. Such analogues were evaluated as substrates for a key enzyme in the dolichyl-dependent pathway of glycan biosynthesis, dolichyl phosphate mannose (Dol-P-Man) synthase. It was shown that some functional groups, including labels such as biotin, could be tolerated. When the synthetic analogues were attached to a solid support they were still substrates for the Dol-P-Man system and thus allowed the enzymatic solid-phase synthesis of glycolipids.  相似文献   

14.
王永伟  向纪明 《广州化工》2012,(5):25-27,30
许多有机硒化合物具有生理活性,在医药和添加剂等方面显现出巨大的应用前景。有机硒化合物按照结构可以分为:硒化氨基酸,硒化多糖,肌醇硒酸酯,硒化茶多酚,硒化亚油酸等几大类。本文综述了以上各类有机硒化合物的合成方法。  相似文献   

15.
The ability of cells to incorporate azidosugars metabolically is a useful tool for extracellular glycan labelling. The exposed azide moiety can covalently react with alkynes, such as bicyclo[6.1.0]nonyne (BCN), by strain‐promoted alkyne–azide cycloaddition (SPAAC). However, the use of SPAAC can be hampered by low specificity of the cycloalkyne. In this article we describe the synthesis of more polar BCN derivatives and their properties for selective cellular glycan labelling. The new polar derivatives [amino‐BCN, glutarylamino‐BCN and bis(hydroxymethyl)‐BCN] display reaction rates similar to those of BCN and are less cell‐permeable. The labelling specificity in HEK293 cells is greater than that of BCN, as determined by confocal microscopy and flow cytometry. Interestingly, amino‐BCN appears to be highly specific for the Golgi apparatus. In addition, the polar BCN derivatives label the N‐glycan of the membrane calcium channel TRPV5 in HEK293 cells with significantly enhanced signal‐to‐noise ratios.  相似文献   

16.
The plant cell wall provides the richest available resource of fermentable carbohydrates and biobased materials. The main component of plant cell walls is cellulose, which is the most abundant biomolecule on earth. Apart from cellulose, which is constructed from relatively simple β-1,4-glucan chains, plant cell walls also contain structurally more complex heteropolysaccharides (hemicellulose and pectin), as well as lignin and cell-wall proteins. A detailed understanding of the molecular structures, functions, and biosyntheses of cell-wall components is required to further promote their industrial use. Plant cell-wall research is, to a large degree, hampered by a lsack of available well-defined oligosaccharide samples that represent the structural features of cell-wall glycans. One technique to access these oligosaccharides is automated glycan assembly; a technique in which monosaccharide building blocks are, similarly to automated peptide and oligonucleotide chemistry, successively added to a linker-functionalized resin in a fully automated manner. Herein, recent research into the automated glycan assembly of different classes of cell-wall glycans used as molecular tools for cell-wall biology is discussed. More than 60 synthetic oligosaccharides were prepared and printed as microarrays for screening monoclonal antibodies that recognize plant cell-wall polysaccharides. The synthesized oligosaccharides have also been used to investigate glycosyltransferases and glycoside hydrolases, which are involved in synthesis and degradation of plant cell walls, as well as for the analysis of cell-wall-remodeling enzymes.  相似文献   

17.
The newly established mouse cortical-bone-derived stem cells (mCBSCs) are unique stem cells compared to mouse mesenchymal stem cells (mMSCs). The mCBSC-treated hearts after myocardial infarction have been reported to have greater improvement in myocardial structure and functions. In this study, we examined the stemness features, cell surface glycan profiles, and paracrine functions of mCBSCs compared with mMSCs. The stemness analysis revealed that the self-renewing capacity of mCBSCs was greater than mMSCs; however, the differentiation capacity of mCBSCs was limited to the chondrogenic lineage among three types of cells (adipocyte, osteoblast, chondrocyte). The cell surface glycan profiles by lectin array analysis revealed that α2-6sialic acid is expressed at very low levels on the cell surface of mCBSCs compared with that on mMSCs. In contrast, the lactosamine (Galβ1-4GlcNAc) structure, poly lactosamine- or poly N-acetylglucosamine structure, and α2-3sialic acid on both N- and O-glycans were more highly expressed in mCBSCs. Moreover, we found that mCBSCs secrete a greater amount of TGF-β1 compared to mMSCs, and that the TGF-β1 contributed to the self-migration of mCBSCs and activation of fibroblasts. Together, these results suggest that unique characteristics in mCBSCs compared to mMSCs may lead to advanced utility of mCBSCs for cardiac and noncardiac repair.  相似文献   

18.
The main categories of glycan changes in cancer are: (1) decreased expression of histo-blood group A and/or B antigens and increased Lewis-related antigens, (2) appearance of cryptic antigens, such as Tn and T, (3) emergence of genetically incompatible glycans, such as A antigen expressed in tumors of individuals of group B or O and heterophilic expression of Forssman antigen (FORS1), and (4) appearance of neoglycans. This review focuses on the expression of genetically incompatible A/B/FORS1 antigens in cancer. Several possible molecular mechanisms are exemplified, including missense mutations that alter the sugar specificity of A and B glycosyltransferases (AT and BT, respectively), restoration of the correct codon reading frame of O alleles, and modification of acceptor specificity of AT to synthesize the FORS1 antigen by missense mutations and/or altered splicing. Taking advantage of pre-existing natural immunity, the potential uses of these glycans for immunotherapeutic targeting will also be discussed.  相似文献   

19.
The biological relevance of glycans as mediators of key physiological processes, including disease‐related mechanisms, makes them attractive targets for a wide range of medical applications. Despite their important biological roles, especially as molecular recognition elements, carbohydrates have not been fully exploited as therapeutics mainly due to the scarcity of structure–activity correlations and their non‐drug‐like properties. A more detailed understanding of the complex carbohydrate structures and their associated functions should contribute to the development of new glycan‐based pharmaceuticals. Recent significant progress in oligosaccharide synthesis and chemical glycobiology has renewed the interest of the medicinal chemistry community in carbohydrates. This promises to increase our possibilities to harness them in drug discovery efforts for the development of new and more effective, synthetic glycan‐based therapeutics and vaccines.  相似文献   

20.
In this account, we present a summary of our progress in the study of glycan solution conformations by NMR spectroscopy. We begin by comparing the structural biology of glycans to that of proteins. We continue by defining the challenges in solution structural studies of glycans as we see them and show what we have done to help address those challenges. This includes Residual Dipolar Coupling studies and their hurdles, accurate coupling constant measurement in the presence of strong 1H‐1H coupling, direct detection of hydrogen bonds where the NHs, OHs or CHs are the hydrogen bond donors, and on‐cell NMR structural studies. We also suggest some future approaches to glycan structure determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号