首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36335篇
  免费   1832篇
  国内免费   162篇
工业技术   38329篇
  2023年   203篇
  2022年   302篇
  2021年   1023篇
  2020年   759篇
  2019年   892篇
  2018年   1012篇
  2017年   1135篇
  2016年   1040篇
  2015年   829篇
  2014年   1198篇
  2013年   2079篇
  2012年   1799篇
  2011年   2187篇
  2010年   1600篇
  2009年   1642篇
  2008年   1530篇
  2007年   1353篇
  2006年   1076篇
  2005年   1043篇
  2004年   1127篇
  2003年   1031篇
  2002年   1016篇
  2001年   822篇
  2000年   634篇
  1999年   631篇
  1998年   2301篇
  1997年   1517篇
  1996年   1043篇
  1995年   697篇
  1994年   576篇
  1993年   630篇
  1992年   256篇
  1991年   308篇
  1990年   270篇
  1989年   221篇
  1988年   239篇
  1987年   174篇
  1986年   186篇
  1985年   206篇
  1984年   148篇
  1983年   105篇
  1982年   139篇
  1981年   135篇
  1980年   128篇
  1979年   100篇
  1978年   82篇
  1977年   153篇
  1976年   263篇
  1975年   95篇
  1973年   57篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
In the present study, a prebiotic acerola juice containing gluco-oligosaccharides and dextran was produced and processed by high-intensity ultrasound (HIUS). After a simulated in vitro digestion, the gluco-oligosaccharides and dextran maintained 90% and 80% of their initial concentration in all prebiotic’s juices. At the same time, Vitamin C and phenolic compounds concentration increased significantly by 19% and 7% (P < 0.05). After the in vitro digestion, the prebiotic juice HIUS processed by 10 min showed the highest increase in gluco-oligosaccharides and bioactive compound concentrations. The HIUS processing imparted some dextran hydrolysis and improved its fermentability by Lacticaseibacillus casei. Gluco-oligosaccharides were extensively consumed as substrate in simulated intestinal conditions, promoting the L. casei NRRL B-442 growth and production of organic acids and short-chain organic acids. The prebiotic juice HIUS processed for 6 min showed the best responses regarding the metabolism of L. casei NRRL B-442. The results showed high-intensity ultrasound processed acerola juices containing gluco-oligosaccharides and dextran as a prebiotic food.  相似文献   
2.
3.
The conventional S-alkylation of cysteine relies upon using activated electrophiles. Here we demonstrate high-yielding and selective S-alkylation and S-lipidation of cysteines in unprotected synthetic peptides and proteins by using weak electrophiles and a Zn2+ promoter. Linear or branched iodoalkanes can S-alkylate cysteine in an unprotected 38-residue Myc peptide fragment and in a 91-residue miniprotein Omomyc, thus highlighting selective late-stage synthetic modifications. Metal-assisted cysteine alkylation is also effective for incorporating dehydroalanine into unprotected peptides and for peptide cyclisation via aliphatic thioether crosslinks, including customising macrocycles to stabilise helical peptides for enhanced uptake and delivery to proteins inside cells. Chemoselective and efficient late-stage Zn2+-promoted cysteine alkylation in unprotected peptides and proteins promises many useful applications.  相似文献   
4.
In the offshore oil and gas industry, mainly focusing on the use of rigid or flexible pipes of subsea infrastructure applied to risers or flowlines, one of the greatest difficulties is the interpretation of the combined effects of the various correlated phenomena (hydrodynamic effects of intermittent flow, the effects of corrosivity of the environment in addition to variations in pressure, temperature, and dynamic loading). On the basis of this scenario, defining the degree of severity of each of the correlated system variables becomes of fundamental importance for establishing reliable criteria for selecting materials for subsea application. The established flow pattern directly affects the corrosion rate (or the pipe material mass loss), but the balance of other variables including possible changes in the physical and transported fluid chemical properties may increase the damage up to an order of magnitude, which is a piece of information normally not foreseen in design criteria. Therefore, to improve the understanding of the corrosion study influenced by multiphase flow, a testing loop was designed and assembled at the Corrosion and Protection Laboratory of the Institute for Technological Research, in which API X80 steel coupons were positioned in locations with a 0° and 45° inclinations. Tests were conducted by varying the partial pressure of the gaseous phase containing blends of CO2 and H2S with N2 balance, mixed with the liquid phase containing light oil and heavy oil in water with salinity (NaCl)-simulating oil well conditions with 80% water cut. The main objective of this study is to establish models that can predict the corrosion intensity in conditions close to those obtained experimentally. To achieve results, the multiple regression and Box–Cox transformation methods were applied. These models will make possible damage prediction and optimization of matrix parameters for the multiphase-loop test.  相似文献   
5.
Silicon - Corn plants are highly demanding of nitrogen and the application of silicon has been studied because it minimizes stress from different natures, and for the better utilization of some...  相似文献   
6.
The repair of bone fractures is a clinical challenge for patients with impaired healing, such as osteoporosis. Currently, different strategies have been developed to design new biomaterials, enhancing their interactions with biological systems and conducting the cellular behavior in the desired direction to help fracture healing. In the present work, hydroxyapatite-graphene oxide (HA-GO) nanocomposites were produced and the morphological and physicochemical influences of the addition of 0.5 wt%, 1.0 wt% and 1.5 wt% of GO to HA were observed. FEG-SEM and TEM analyses of HA-GO nanocomposites showed HA nanoparticles adhered to the surface of the GO sheets, suggesting an effective method to form nanostructured graphene-based biomaterials. As confirmation, physicochemical analyses by Raman, FTIR and TGA demonstrated a strong affinity between HA and GO, according to the increase of concentration from 0.5 wt% to 1.5 wt% GO in the HA-GO nanocomposites. Also, in order to evaluate the HA-GO nanocomposites behavior under biological microenvironment, in vitro bioactivity and indirect cytotoxicity tests were performed. FEG-SEM analyses confirmed the positive results for the bioactivity properties of HA-GO nanocomposite and indirect cytotoxicity demonstrated that even with a decrease in the hDPSCs viability and proliferation, when increasing to 1.5 wt% of GO concentration, high level of cell viability was exhibited by HA-GO nanocomposites. These biological results suggested the 0.5 wt% HA-GO nanocomposite as a potential bioactive bone graft and a promising biomaterial for bone tissue regeneration, when compared to the pure HA.  相似文献   
7.
This work aimed to examine the performance of the hybrid sintering of clay ceramic in a microwave furnace, compared to the sintering process in a conventional furnace. The raw materials were subjected to X-ray fluorescence, loss on ignition (LOI), X-ray diffraction, particle size distribution, real specific mass, and thermogravimetric analyses. The red clay ceramic mass was prepared, extruded, pre-sintered in a conventional furnace at 600°C/60 min, and sintered at temperatures between 700 °C and 1100 °C. The sintering conventional (resistive oven) was carried out for 60 min with a heating rate of 10°C/min. In the microwave furnace, the sintering times were 5, 10, and 15 min, with a heating rate of 50°C/min, with a sintering chamber coated with silicon carbide (susceptor). The sintered specimens were characterized according to linear shrinkage, water absorption, apparent porosity, apparent specific mass, X-ray diffraction, Raman spectroscopy analysis, spectroscopy analysis in the ultraviolet and visible regions, microhardness, and scanning electron microscopy. The results showed that microwave sintering promoted an increase in the microhardness and apparent specific mass, and reduction in water absorption and apparent porosity values, due to greater densification in the microstructure. The best results occurred for specimens sintered at 1100°C.  相似文献   
8.
The quality and safety of maize (Zea mays L.) from different grain storage units (GSUs), located in the main producing region of Rondônia State, Northern Brazil, were evaluated. Maize grains (n = 76) stored in four GSUs were collected from July to November 2014 and evaluated for grain damages, humidity, fungi and fumonisins (FBs) content. The climate conditions data were also obtained from plant growing to storage periods. Regarding the moisture content and water activity (aw), these varied from 10.0% to 16.1% and 0.5 to 0.8, respectively. As expected, fungi spores were present in 94.8% of the samples, prevailing Fusarium genera, with a fungi colony maximum of 2.2 × 104 CFU g?1. Regarding FBs, 60.5% of the samples were contaminated, below Brazilian and United States maximum limits, but 9.2% had levels higher than the European legislation.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号