首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Ceramics International》2016,42(16):18223-18237
Bone defects are very challenging in orthopedic practice. The ideal bone grafts should provide mechanical support and enhance the bone healing. Biodegradable magnesium (Mg)–based alloys demonstrate good biocompatibility and osteoconductive properties, which are promising biomaterials for bone substitutes. However, the high rate of their biodegradation in human body environment is still challenging. For this scope, synthesis Mg-based composites with bioceramic additives such as HA and titania (TiO2) is a routine to solve this problem. The aim of this study was to evaluate the effect of addition TiO2 nanopowders on the corrosion behavior and mechanical properties of Mg/HA-based nanocomposites fabricated using a milling-pressing-sintering technique for medical applications. The microstructure of Mg/HA/TiO2 nanocomposites, in vitro degradation and biological properties including in vitro cytocompatibility were investigated. The corrosion resistance of Mg/HA-based nanocomposites was significantly improved by addition 15 wt% of TiO2 and decrease HA amount to 5 wt% this was inferred from the lower corrosion current; 4.8 µA/cm2 versus 285.3 µA/cm2 for the Mg/27.5 wt%HA, the higher corrosion potential; −1255.7 versus −1487.3 mVSCE, the larger polarization resistance; 11.86 versus 0.25  cm2 and the significantly lower corrosion rate; 0.1 versus 4.28 mm/yr. Compressive failure strain significantly increased from 1.7% in Mg/27.5HA to 8.1% in Mg/5HA/15TiO2 (wt%). The Mg/5HA/15TiO2 (wt%) nanocomposite possessed high corrosion resistance, cytocompatibility and mechanical properties and can be considered as a promising material for implant applications.  相似文献   

2.
BACKGROUND: Polymer/hydroxyapatite (HA) nanocomposites have emerged in recent years as a new class of biomaterials that can be used as artificial bone. Compared to pure HA or HA‐based bioceramics, and metallic implants, they exhibit good plasticity, improved toughness and good mechanical compatibility with natural bone. Compared to their microcomposite counterparts and the pristine polymer matrix, they show increased tensile strength and modulus, and enhanced bioactivity. RESULTS: In this study, polyamide 6 (PA6)/nanoscale HA (n‐HA) nanocomposites were prepared via in situ hydrolytic ring‐opening polymerization of ε‐caprolactam in the presence of newly synthesized n‐HA aqueous slurry. The synthesized n‐HA, which is similar to bone apatite in chemical composition, microscopic morphology and phase composition, dispersed uniformly in the composites even if its loading was up to 60 wt%. The PA6/n‐HA composites show a similarity to natural bone in chemical composition to a certain extent. Mechanical tests show that the composites are reinforced considerably by the incorporation of needle‐like n‐HA, and the composites have mechanical properties near to those of natural bone. CONCLUSION: The PA6/n‐HA nanocomposite with high n‐HA content shows a similarity to natural bone in terms of chemistry and mechanical properties. This makes it a possible candidate for biomaterials suitable for bone repair or fixation. Copyright © 2008 Society of Chemical Industry  相似文献   

3.
《Ceramics International》2023,49(6):9647-9656
In this work, graphene oxide (GO)/hydroxyapatite (HA) composite coatings were successfully prepared on titanium substrate by electrophoretic deposition technology. Subsequently, microstructure, phase composition, adhesion strength, hydrophilicity, corrosion resistance, bioactivity, antibacterial activity and biocompatibility of the coating were evaluated. The adhesion strength of coating increased by 76% from 6.46 MPa to 17.81 MPa with 0 wt% GO to 12 wt% GO and the corrosion rate of coating with 8 wt% GO was achieved at the minima of (1.493 × 10-3mm/a). Biomineralization experiment indicated the excellent bioactivity of GO/HA composite coatings. The water contact angle of the composite coatings increased from 20.6°(0 wt% GO) to 38.1°(12 wt%GO). The antibacterial rates of coating with 5 wt% GO was 96.7%, while declined to 25% after thermal treatment. In-vitro L929 cell culture experiments indicated the composite coatings with 5 wt% GO exhibited good biocompatibility.  相似文献   

4.
Graphene oxide (GO) incorporated ultra-high molecular weight polyethylene (UHMWPE) nanocomposites were prepared by encapsulating GO by UHMWPE in an aqueous media via high-shear mixing, which were subsequently dried and compression molded. Morphological characterizations via scanning electron microscopy revealed the intercalation of UHMWPE chains in the graphitic stacks corresponding to GO. Further, dielectric permittivity of UHMWPE/GO nanocomposite of 1 wt% GO showed a drastic increase (~61) as compared to pure UHMWPE (~2) due to an enhanced interfacial polarization. A significantly higher value of remnant polarization (~10 nC/cm2) and coercive field (~3 kV/cm) was observed in UHMWPE/GO nanocomposite of 1 wt% GO, which showed a strong hysteresis loop of polarization versus electric field plot as compared to pure UHMWPE, which displayed a very weak hysteresis loop. The piezoelectric coefficient (d33) of ~9.5 pm/V was estimated in UHMWPE/GO nanocomposite of 1 wt% GO via piezoresponse force microscopy. Nanocomposite sensor devices were also fabricated and piezoelectric output voltage of ~6 V was recorded in UHMWPE/GO nanocomposite of 1 wt% of GO. We report here for the first time the unique ferroelectric and piezoelectric properties displayed by UHMWPE/GO nanocomposites.  相似文献   

5.
《Ceramics International》2021,47(19):27071-27081
In this work, ternary HA/chitosan/graphene oxide (GO) coating was applied via electrophoretic deposition on AZ91D magnesium alloy as bone implants, successfully. Subsequently, phase composition, surface morphology, hardness, corrosion behavior, bioactivity and antibacterial of the composite coatings were studied. Hardness and Young's modulus of the composite coatings increased from 40 ± 1.5 MPa and 3.1 ± 0.42 GPa to 60 ± 3.12 MPa and 8 ± 0.53 GPa for composite coatings with 0 and 2 wt% GO, respectively. The results of the SBF solution soaking of the composites after 24 days, indicated the improvement of HA growth due to the increasing of the GO addition in composite coating. New HA grains with leaf-like morphology grew uniformly at higher amounts of GO (1 and 2 %wt) in a perfectly balanced composition. Rate of the substrate corrosion significantly decreased from 4.3 to 0.2 (mpy), when the amount of GO increased from 0 to 2 wt% due to reduction of the surface cracks at the presence of the GO reinforcement. Also, there was no Escherichia coli and Staphylococcus aureus bacteria growth in broth medium after 24 h and OD600 results at 24 h post inoculation for the 2%wt GO addition in coating.  相似文献   

6.
This study reports a green and powerful strategy for preparing cellulose nanocrystal (CNC)/graphene oxide (GO)/natural rubber (NR) nanocomposites hosting a 3D hierarchical conductive network. Due to good dispersibility and amphiphilic nature of CNC, well dispersed CNC/GO nanohybrids were prepared. Hydrogen bonding interactions between CNC and GO greatly enhanced the stability of the CNC/GO nanohybrids. CNC/GO nanohybrids were introduced into NR latex under sonication and the mixture was cast. Self-assembled CNC/GO nanohybrids preferentially dispersed in the interstice between latex microspheres allowing the construction of a 3D hierarchical conductive network. By combining strong hydrogen bonds and 3D conductive network, both electrical conductivity and mechanical properties (tensile strength and modulus) have been significantly improved. The electrical conductivity of the nanocomposite with 4 wt% GO and 5 wt% CNC exhibited an increase of nine orders of magnitude compared to the nanocomposite with only 4 wt% GO; meanwhile, the electrical percolation threshold was 3-fold lower than for NR/GO composites.  相似文献   

7.
《Ceramics International》2023,49(1):538-547
The poor mechanical properties of 3D printed HA bone scaffold is always a challenge in tissue engineering, to address this issue, carboxymethyl chitosan (CMCS) was proposed to modify HA bone scaffolds by a physical blending method in this research. A series of HA and HA/CMCS composite ceramic scaffolds were printed by using piezoelectric inkjet 3D printing technology, and their properties were investigated in terms of forming quality, structural morphology, mechanical properties, degradability, cytotoxicity, and cell adhesion growth. The results of forming quality and structural morphology show that with the increase of CMCS content, the forming quality of the samples deteriorated, the pore size and porosity increased. However, when the content of CMCS reached 5 wt%, obvious cracks appeared on the surface of the sample, and the forming quality was relatively poor. The mechanical testing results indicated the toughness of composites could be enhanced by incorporating CMCS into HA, which was attributed to the higher strength connections of the CMCS polymer network between HA particles and the stronger interaction between HA and CMCS molecules. FTIR spectra further revealed the strong hydrogen bonding interaction between CMCS and HA. Moreover, the degradation rate and mineralization ability of the sample increased with the content of CMCS, but the compressive strength during degradation increased with the CMCS content, indicating that incorporating CMCS into HA cannot only improve the mechanical property and biological activity of the scaffold but also makes up the defect of slow degradation of pure HA scaffold. Finally, the cytotoxicity, cell adhesion, and cell proliferation tests show that HA and HA/CMCS composite samples had good cytocompatibility, HA/CMCS sample with 3 wt% CMCS possessed the best bioactivity. In summary, HA/CMCS composite powder with 3 wt% CMCS content is the optimal matrix material for 3D printing bone scaffolds.  相似文献   

8.
Polyimide (PI) and chemical modified graphene oxide nanocomposite films are prepared by in situ polymerization from solutions of pyromellitic dianhydride and 4,4′‐oxydianiline with various amount (0.5–2 wt%) of 3‐aminopropyltriethoxysilane (APTS) functionalized graphene oxide (GO) sheets in dimethylacetamide. The APTS functionalized GO (GO‐APTS) is a versatile platform for polymer grafting, improving excellent dispersion of GO in the PI matrix, and forming strong interaction with the PI matrix. The GO‐APTS/PI nanocomposites exhibited improvement in mechanical and thermal properties by addition of a small amount of GO‐APTS. With the addition of a small amount of GO‐APTS (1.5 wt%) to PI matrix, mechanical properties with the tensile strength and Young's modulus improved by 45% and 15%, respectively. The thermal analysis showed that the thermal stability of PI was slightly enhanced by the incorporation of GO‐APTS (1.5 wt%). This approach provides a strategy for developing high performance functionalized GO‐polymer composite materials. POLYM. COMPOS., 37:907–914, 2016. © 2014 Society of Plastics Engineers  相似文献   

9.
《Ceramics International》2017,43(10):7573-7580
In this study, β-TCP/CNT nanocomposite has been synthesized by solution precipitation method. Then, the effects of the different percentage of CNT (CNT1β-TCP, CNT3β-TCP, CNT5β-TCP) and surfactant (CNT1β-TCP1SDBS, CNT1β-TCP2SDBS, CNT1β-TCP3SDBS) on β-TCP/CNT nanocomposite powder were studied. The X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) analyses were used to characterize the samples. The observations revealed that the microstructure of 1 wt% CNT could provide dispersion without agglomeration in nanocomposite powder; however, a higher concentration of CNT powder in the nanocomposite resulted in the formation of Ca2PO7 phase. Implementing 2 wt% of SDBS as a surfactant modified the shape, size, and distribution of CNT particles on nanocomposites. Finally, the nanocomposite sample was immersed in simulated body fluid (SBF) to evaluate the in vitro bioactivity. It obviously showed an apatite layer on the surface after 7 days of immersion in SBF. Taken together, this nanocomposite might be potentially to be used as bone repair biomaterial.  相似文献   

10.
The development of new implantable biomaterials requires bone‐mimicking physical properties together with desired biocompatible property. In continuation to our earlier published research to establish compositional dependent multifunctional bone‐like properties and cytocompatibility response of hydroxyapatite (HA)‐BaTiO3 composites, the toxicological property evaluation, both in vitro and in vivo, were conducted on HA‐40 wt% BaTiO3 and reported in this work. In particular, this work reports in vitro cytotoxicity of mouse myoblast cells as well as in vivo long‐term tissue and nanoparticles interaction of intra‐articularly injected HA‐40 wt% BaTiO3 and BaTiO3 up to the concentration of 25 mg/mL in physiological saline over 12 weeks in mouse model. The careful analysis of flow cytometry results could not reveal any statistically significant difference in terms of early/late apoptotic cells or necrotic cells over 8 d in culture. Extensive histological analysis could not record any signature of cellular level toxicity or pronounced inflammatory response in vital organs as well as at knee joints of Balb/c mice after 12 weeks. Taken together, this study establishes nontoxic nature of HA‐40 wt% BaTiO3 and therefore, HA‐40 wt% BaTiO3 can be used safely for various biomedical applications.  相似文献   

11.
《Ceramics International》2022,48(16):22743-22758
Ion doping is an approach to modify properties of materials, like hydroxyapatite (HA), that contributes to designing biomaterials with desired characteristics applicable in bone defect treatments. Recently, boron (B) has been noticed in biomaterial fields due to its beneficial effects on formation, growth, and quality of bone. In this study, B-doped HA nanoparticles with different molar concentrations of B (0.05, 0.1, 0.25, and 0.5) were synthesized through microwave-assisted wet precipitation. The effects of B content on various properties of HA were evaluated. The results demonstrated that the size of HA particles reduced from 106 nm to 89-85 nm in B doped materials. Meanwhile, the crystallinity degree of B doped HA (BHA) samples was between 89.90% and 93.77%, compared to 95.19% of HA. Diametral tensile strength of samples was measured in the ranges of 2.51 and 3.61 with no significant difference among groups. The micro-hardness of HA was 0.88 GPa, whilst doped ones had hardness values of 0.5 GPa–0.68 GPa. Biodegradability of samples increased from less than 1% to approximately 4% after 28 days, while B-doping did not make any change in the degradation rate. Doping dosages were appropriate in terms of bioactivity and cell viability, and B doping caused higher bioactivity and cell proliferation. All changed properties were dose-dependent and more effective in doped groups with a higher amount of B. Despite proliferative effect, 260 μg/l and 770 μg/l of B release in two groups with the highest dopant concentrations did not positively influence the osteogenic activity of cells. Our results demonstrated that doping concentrations that resulted in B release ≤260 μg/l seem more appropriate dosage, especially for bone tissue engineering and substitute applications due to promoted bioactivity and proliferation, as well as no obstructive effects on mechanical properties and osteogenic activities of HA.  相似文献   

12.
《Ceramics International》2020,46(15):23599-23610
High-energy ball milling was employed to prepare carbonated hydroxyapatite/silicon dioxide (CHA/SiO2) nanocomposites. Then, these nanocomposite powders were sintered at 900 and 1300 °C. XRD technique, FTIR spectroscopy and SEM were employed to examine the structure, molecular structure and microstructure of the sintered nanocomposites samples, respectively. Moreover, their mechanical properties were also measured. Furthermore, in vitro bioactivity and cytotoxicity of these nanocomposites were evaluated. The results indicated that the successive increases in SiO2 contents led to remarkable enhancement for densification behavior, mechanical properties and in vitro bioactivity of nanocomposites sintered at 900 °C. However, further increase in the sintering temperature to 1300 °C caused dramatic decreases in density and mechanical properties of nanocomposites. On the contrary, better bioactivity behavior was achieved. Amazingly, the obtained results revealed that the sample having the highest content of SiO2 and sintered at 900 °C had no toxic effects on bone-like cells while, that sintered at 1300 °C exhibited mild cytotoxicity. Based on the variations in the abovementioned properties, these nanocomposites can be used in different biomedical applications.  相似文献   

13.

In the present research, porous hydroxyapatite/collagen/graphene oxide (HA/COL/GO) nanocomposites were synthesized using the freeze-drying method for naproxen delivery. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), thermogravimetric analysis (TGA), and Brunauer–Emmett–Teller (BET) techniques were applied to analyze the synthesized specimens. In addition, the loading of naproxen and release behavior (pH 7.4 and T?=?37 °C) of the prepared nanocomposites were studied via UV–Vis spectrophotometry. The FE-SEM analysis revealed that HA/COL/GO nano-composites had a rod-like structure and the morphological change in the HA/COL/GO nano-composites confirmed that graphene oxide (GO) sheets and HA/COL nano-particles were successfully incorporated where the nanocomposites were synthesized with size smaller than 50 nm. BET analysis was utilized to confirm the meso and macrostructure of specimens with an average pore diameter within 15–103 nm as well as the BET surface area of 21–178 m2/g. The application of synthesized samples for naproxen delivery in vitro was investigated. As the weight ratio of GO increased, so did the percentage of drug-loading; for the HA/COL/GO-3 sample where the graphene oxide (GO) amount was maximum, the percentage of drug loading capacity (LC%) and percentage of encapsulation efficiency (EE%) were obtained 38.7% and 84.8%, respectively. Naproxen release results in phosphate buffer saline (PBS) confirmed that the initial release occurred in all synthesized nanocomposites within the first 24 h, after which the release rate gradually declined to about 14 days. Under optimal conditions, the HA/COL/GO-3 sample retained about 39.2% of the loaded drug after 14 days, as some of the drug molecules were deeply embedded in the HA/COL/GO-3 sample. Furthermore, the results revealed that the degradation rates of the synthesized nanocomposites can be controlled by adjusting the amount of graphene oxide (GO). Thus, the results show that the samples synthesized in this research can suitable candidates for continuous release of naproxen and bone tissue engineering.

  相似文献   

14.
In this study, novel graphene oxide/chitosan nanocomposite coatings with long term drug-eluting potential are presented. The coatings are fabricated by the facile and reproducible electrophoretic deposition technique. Analysis of the prepared films shows that the graphene oxide nanosheets are exfoliated in the chitosan matrix. Fourier-transform infrared spectrometry reveals polymer attachment to the carboxylic bonds of graphene oxide, providing a strong interaction and exfoliation of the nanolayers. In vitro viability assay by human osteosarcoma cells (MG-63) demonstrates that the nanocomposite films are highly biocompatible up to 30 wt% graphene oxide, but at higher concentrations a slight cytotoxicity is noticed. Alkaline phosphates enzyme assay also reveals that the presence of graphene oxide nanosheets moderately hampers osteogenesis of the cultured cells. It is shown that vancomycin-loaded nanocomposite coatings gradually release the drug macromolecules for relatively long period of time (up to 4 weeks). The electrodeposited films also exhibit a high bactericidal potential against Gram-positive Staphylococcus aureus. Effects of graphene oxide nanosheets on the physicochemical, biological, antimicrobial and drug-eluting properties of electrodeposited chitosan films are presented and discussed. It is shown that the GO/CS films support the initial attachment, proliferation and growth of osteoblast-like cells.  相似文献   

15.
It is critical to develop highly effective antimicrobial agents that are not harmful to humans and do not present adverse effects on the environment. Although antimicrobial studies of graphene-based nanomaterials are still quite limited, some researchers have paid particular attention to such nanocomposites as promising candidates for the next generation of antimicrobial agents. The polyvinyl-N-carbazole (PVK)-graphene oxide (GO) nanocomposite (PVK-GO), which contains only 3 wt% of GO well-dispersed in a 97 wt% PVK matrix, presents excellent antibacterial properties without significant cytotoxicity to mammalian cells. The high polymer content in this nanocomposite makes future large-scale material manufacturing possible in a high-yield process of adiabatic bulk polymerization. In this study, the toxicity of PVK-GO was assessed with planktonic microbial cells, biofilms, and NIH 3T3 fibroblast cells. The antibacterial effects were evaluated against two Gram-negative bacteria: Escherichia coli and Cupriavidus metallidurans; and two Gram-positive bacteria: Bacillus subtilis and Rhodococcus opacus. The results show that the PVK-GO nanocomposite presents higher antimicrobial effects than the pristine GO. The effectiveness of the PVK-GO in solution was demonstrated as the nanocomposite "encapsulated" the bacterial cells, which led to reduced microbial metabolic activity and cell death. The fact that the PVK-GO did not present significant cytotoxicity to fibroblast cells offers a great opportunity for potential applications in important biomedical and industrial fields.  相似文献   

16.
Thermoplastic starch (TPS), as a natural based polymer, is known to have the capability to be used in biological applications due to its biocompatibility and biodegradability. In this study, mechanical properties of TPS are enhanced by incorporating bioactive β-tricalcium phosphate (β-TCP) particles for bone tissue engineering applications. Starch-based nanocomposites containing 3, 5, and 10 wt% of β-TCP nanoparticles (TT3, TT5, TT10) were made using a co-rotating twin-screw extruder. Dynamic light scattering (DLS) and X-ray diffraction (XRD) techniques were employed to analyze the nanocomposites. Moreover, degradability, swelling degree, and biomineralization in a simulated body fluid (SBF) were studied. To investigate the dispersion of β-TCP nanoparticles in the composite and biomineralization of the nanocomposites after incubation in SBF, scanning electron microscopy (SEM) and energy dispersive X-Ray analysis (EDX) were performed. Evaluation of mechanical properties of TPS and nanocomposites demonstrated that increase in β-TCP content enhanced mechanical properties. Besides, the bioactivity of these three nanocomposite materials was proven by nucleation of hydroxyapatite on the samples’ surface after incubation in simulated body fluid (SBF). Cytotoxicity test was done as well. Results of the current study have paved the way for the application of TPS/β-TCP composite as bone tissue engineering material.  相似文献   

17.
In this study, biobased polyamide/functionalized graphene oxide (PA-FGO) nanocomposite is developed using sustainable resources. Renewable PA is synthesized via polycondensation of hexamethylenediamine (HMDA) and biobased tetradecanedioic acid. Furthermore, GO is functionalized with HMDA to improve its compatibility with biobased PA and in situ polymerization is employed to obtain homogeneous PA-FGO nanocomposites. Compatibility improvement provides simultaneous increases in the tensile strength, storage modulus, and conductivity of PA by adding only 2 wt% FGO (PA-FGO2). The tensile strength and storage modulus of PA-FGO2 nanocomposite are enhanced dramatically by ≈50% and 30%, respectively, and the electrical conductivity reached 3.80 × 10–3 S m−1. In addition, rheology testing confirms a shear-thinning trend for all samples as well as a significant enhancement in the storage modulus upon increasing the FGO content due to a rigid network formation and strong polymer-filler interactions. All these improvements strongly support the excellent compatibility and enhanced interfacial interactions between organic–inorganic phases resulting from GO surface functionalization. It is expected that the biobased PA-FGO nanocomposites with remarkable thermomechanical properties developed here can be used to design high-performance structures for demanded engineering applications.  相似文献   

18.
Following the quest for new composite biomaterials for bone tissue engineering, this work presents the processing of new nanocomposite made of polycaprolactone matrix and wollastonite particles. Wollastonite nanopowder was obtained by thermal treatment of polymethyloxosilane resin mixed with silica and calcium hydroxide. Bioactive character of the ceramic nanopowder was verified in simulated body fluid (SBF). The apatite formation on wollastonite grain surface after immersion in SBF was observed. Basic mechanical properties of the samples containing various amount of ceramic nanoparticles have been examined. It was shown that the presence of small amount of wollastonite nanoparticles (0.5–1.0 wt%) improves significantly the Young's modulus, tensile strength, and work-of-fracture of polymer matrix composite. Increased content of ceramic nanoadditive (>2%) in nanocomposites resulted in degradation of their mechanical characteristics.  相似文献   

19.
β-CaSiO3/ZrO2 (3Y) nanocomposites were successfully fabricated by spark plasma sintering (SPS) technique. The addition of nanocrystalline ZrO2 could inhibit the phase transition of micrometer sized CaSiO3 and increase its phase transitional temperature. The relative densities of the dense β-CaSiO3/ZrO2 nanocomposites were above 98%. Nanocrystalline ZrO2 has formed a network structure in the nanocomposites, which could improve the mechanical properties of nanocomposites. The fracture strength and fracture toughness of the nanocomposites were as high as 395 MPa and 4.08 MPa m1/2, respectively. The nanocomposites showed good in vitro bioactivity with hydroxyapatite (HA) layer formation on the ZrO2 network of the nanocomposites in simulated body fluid. The spark plasma sintered β-CaSiO3/ZrO2 (3Y) nanocomposite may provide a new bone graft for load bearing applications.  相似文献   

20.

Post-implantation infections are regarded as a major issue in the biomedical field. Further, many investigations are continuous towards developing antibacterial biocompatible materials. In this regard, hydroxyapatite (HAP), erbium oxide (Eu2O3), and graphene oxide (GO) were introduced in nanocomposites combinations, including single, dual, and triple constituents. The nanoparticles of HAP, Eu2O3, and nanosheets of GO are synthesized separately, while dispersed in the nanocomposites simultaneously. The morphological investigation showed that HAP was configured in a rod-like shape while the nano ellipsoidal shape of Eu2O3 was confirmed. The particle size of the ternary nanocomposite containing HAP/Eu2O3/GO reached the length of 40 nm for the rods of HAP and around 28 nm for the length axis of ellipsoidal Eu2O3 nanoparticles. The roughness average increased to be about 54.7 nm for HAP/GO and decreased to 37.9 nm for the ternary nanocomposite. Furthermore, the maximum valley depth (Rv) increased from HAP to the ternary nanocomposite from 188.9 to 189.8 nm. Moreover, the antibacterial activity was measured, whereas the inhibition zone of HAP/Eu2O3/GO reached 13.2?±?1.1 mm for Escherichia coli and 11.4?±?0.8 mm for Staphylococcus aureus. The cell viability of the human osteoblast cell lines was evaluated to be 98.5?±?3% for the ternary composition from 96.8?±?4% for the pure HAP. The existence of antibacterial activity without showing cytotoxicity against mammalian cells indicates the compatibility of nanocomposites with biomedical applications.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号