首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
工业技术   7篇
  2023年   3篇
  2022年   4篇
排序方式: 共有7条查询结果,搜索用时 156 毫秒
1
1.
Biomedical image processing is widely utilized for disease detection and classification of biomedical images. Tongue color image analysis is an effective and non-invasive tool for carrying out secondary detection at anytime and anywhere. For removing the qualitative aspect, tongue images are quantitatively inspected, proposing a novel disease classification model in an automated way is preferable. This article introduces a novel political optimizer with deep learning enabled tongue color image analysis (PODL-TCIA) technique. The presented PODL-TCIA model purposes to detect the occurrence of the disease by examining the color of the tongue. To attain this, the PODL-TCIA model initially performs image pre-processing to enhance medical image quality. Followed by, Inception with ResNet-v2 model is employed for feature extraction. Besides, political optimizer (PO) with twin support vector machine (TSVM) model is exploited for image classification process, shows the novelty of the work. The design of PO algorithm assists in the optimal parameter selection of the TSVM model. For ensuring the enhanced outcomes of the PODL-TCIA model, a wide-ranging experimental analysis was applied and the outcomes reported the betterment of the PODL-TCIA model over the recent approaches.  相似文献   
2.
The analysis of remote sensing image areas is needed for climate detection and management, especially for monitoring flood disasters in critical environments and applications. Satellites are mostly used to detect disasters on Earth, and they have advantages in capturing Earth images. Using the control technique, Earth images can be used to obtain detailed terrain information. Since the acquisition of satellite and aerial imagery, this system has been able to detect floods, and with increasing convenience, flood detection has become more desirable in the last few years. In this paper, a Big Data Set-based Progressive Image Classification Algorithm (PICA) system is introduced to implement an image processing technique, detect disasters, and determine results with the help of the PICA, which allows disaster analysis to be extracted more effectively. The PICA is essential to overcoming strong shadows, for proper access to disaster characteristics to false positives by operators, and to false predictions that affect the impact of the disaster. The PICA creates tailoring and adjustments obtained from satellite images before training and post-disaster aerial image data patches. Two types of proposed PICA systems detect disasters faster and more accurately (95.6%).  相似文献   
3.
Big health data collection and storing for further analysis is a challenging task because this knowledge is big and has many features. Several cloud-based IoT health providers have been described in the literature previously. Furthermore, there are a number of issues related to time consumed and overall network performance when it comes to big data information. In the existing method, less performed optimization algorithms were used for optimizing the data. In the proposed method, the Chaotic Cuckoo Optimization algorithm was used for feature selection, and Convolutional Support Vector Machine (CSVM) was used. The research presents a method for analyzing healthcare information that uses in future prediction. The major goal is to take a variety of data while improving efficiency and minimizing process time. The suggested method employs a hybrid method that is divided into two stages. In the first stage, it reduces the features by using the Chaotic Cuckoo Optimization algorithm with Levy flight, opposition-based learning, and distributor operator. In the second stage, CSVM is used which combines the benefits of convolutional neural network (CNN) and SVM. The CSVM modifies CNN’s convolution product to learn hidden deep inside data sources. For improved economic flexibility, greater protection, greater analytics with confidentiality, and lower operating cost, the suggested approach is built on fog computing. Overall results of the experiments show that the suggested method can minimize the number of features in the datasets, enhances the accuracy by 82%, and decrease the time of the process.  相似文献   
4.
Quantum key agreement is a promising key establishing protocol that can play a significant role in securing 5G/6G communication networks. Recently, Liu et al. (Quantum Information Processing 18(8):1-10, 2019) proposed a multi-party quantum key agreement protocol based on four-qubit cluster states was proposed. The aim of their protocol is to agree on a shared secret key among multiple remote participants. Liu et al. employed four-qubit cluster states to be the quantum resources and the X operation to securely share a secret key. In addition, Liu et al.'s protocol guarantees that each participant makes an equal contribution to the final key. The authors also claimed that the proposed protocol is secure against participant attack and dishonest participants cannot generate the final shared key alone. However, we show here that Liu et al. protocol is insecure against a collusive attack, where dishonest participants can retrieve the private inputs of a trustworthy participant without being caught. Additionally, the corresponding modifications are presented to address these security flaws in Liu et al.'s protocol.  相似文献   
5.
Electroencephalography (EEG) eye state classification becomes an essential tool to identify the cognitive state of humans. It can be used in several fields such as motor imagery recognition, drug effect detection, emotion categorization, seizure detection, etc. With the latest advances in deep learning (DL) models, it is possible to design an accurate and prompt EEG EyeState classification problem. In this view, this study presents a novel compact bat algorithm with deep learning model for biomedical EEG EyeState classification (CBADL-BEESC) model. The major intention of the CBADL-BEESC technique aims to categorize the presence of EEG EyeState. The CBADL-BEESC model performs feature extraction using the ALexNet model which helps to produce useful feature vectors. In addition, extreme learning machine autoencoder (ELM-AE) model is applied to classify the EEG signals and the parameter tuning of the ELM-AE model is performed using CBA. The experimental result analysis of the CBADL-BEESC model is carried out on benchmark results and the comparative outcome reported the supremacy of the CBADL-BEESC model over the recent methods.  相似文献   
6.
For military warfare purposes, it is necessary to identify the type of a certain weapon through video stream tracking based on infrared (IR) video frames. Computer vision is a visual search trend that is used to identify objects in images or video frames. For military applications, drones take a main role in surveillance tasks, but they cannot be confident for long-time missions. So, there is a need for such a system, which provides a continuous surveillance task to support the drone mission. Such a system can be called a Hybrid Surveillance System (HSS). This system is based on a distributed network of wireless sensors for continuous surveillance. In addition, it includes one or more drones to make short-time missions, if the sensors detect a suspicious event. This paper presents a digital solution to identify certain types of concealed weapons in surveillance applications based on Convolutional Neural Networks (CNNs) and Convolutional Long Short-Term Memory (ConvLSTM). Based on initial results, the importance of video frame enhancement is obvious to improve the visibility of objects in video streams. The accuracy of the proposed methods reach 99%, which reflects the effectiveness of the presented solution. In addition, the experimental results prove that the proposed methods provide superior performance compared to traditional ones.  相似文献   
7.
Sentiment analysis or opinion mining (OM) concepts become familiar due to advances in networking technologies and social media. Recently, massive amount of text has been generated over Internet daily which makes the pattern recognition and decision making process difficult. Since OM find useful in business sectors to improve the quality of the product as well as services, machine learning (ML) and deep learning (DL) models can be considered into account. Besides, the hyperparameters involved in the DL models necessitate proper adjustment process to boost the classification process. Therefore, in this paper, a new Artificial Fish Swarm Optimization with Bidirectional Long Short Term Memory (AFSO-BLSTM) model has been developed for OM process. The major intention of the AFSO-BLSTM model is to effectively mine the opinions present in the textual data. In addition, the AFSO-BLSTM model undergoes pre-processing and TF-IFD based feature extraction process. Besides, BLSTM model is employed for the effectual detection and classification of opinions. Finally, the AFSO algorithm is utilized for effective hyperparameter adjustment process of the BLSTM model, shows the novelty of the work. A complete simulation study of the AFSO-BLSTM model is validated using benchmark dataset and the obtained experimental values revealed the high potential of the AFSO-BLSTM model on mining opinions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号