首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
工业技术   6篇
  2022年   1篇
  2016年   1篇
  2014年   2篇
  2011年   2篇
排序方式: 共有6条查询结果,搜索用时 171 毫秒
1
1.
Journal of Network and Systems Management - IoT applications have become a pillar for enhancing the quality of life. However, the increasing amount of data generated by IoT devices places pressure...  相似文献   
2.
Wireless multimedia sensor networks (WMSNs) have an increasing variety of multimedia‐based applications including image and video transmission. In these types of applications, multimedia sensor nodes should ideally maximize perceptual quality and minimize energy expenditures in communication. For the required perceptual quality to be obtained, quality‐aware routing is a key research area in WMSNs. However, mapping the system parameters to the end user's perceptual quality‐of‐service measures is a challenging task because of incomplete identification metrics. Unfortunately, unless disputable assumptions and simplifications are made, optimal routing algorithm is not tractable. In this paper, we propose a novel image transmission framework to optimize both perceptual quality and energy expenditure in WMSNs. Our framework aims to provide acceptable perceptual quality at the end user by using an analytical distortion prediction model that is able to predict the image distortion resulting from any given error pattern. The innovation of the proposed scheme lies in the combined use of a content‐aware packet prioritization with an energy‐aware and quality‐aware routing protocol, named as image quality‐aware routing. Additionally, it does not only propose an energy‐efficient route selection policy but also manages the network load according to the energy residues of nodes, thus leading to a great energy economy. The results reveal that the framework is capable of identifying true metrics for mapping required image quality to network parameters. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
3.
With internet of things vision, computing systems get the ubiquity of real world. Wireless Sensor Network (WSN) technology plays a critical role for the construction of this paradigm. Hence, WSN technology should be adapted to support interoperability with the commodity internet entities. Since technological background of WSN and IP networks do not fit each other, this effort is not a straightforward process. In this paper, we introduce WiSEGATE which addresses end-to-end reliable interconnection problem between multiple internet entities and sensor nodes. WiSEGATE is a prototype of a new web server which supports three tier service scheme with a data acquisition mechanism of WSN to access the physical data in particular locations in the real world. In WiSEGATE, an interconnection gateway handles operations required for the interoperability. Since this gateway maintains reliable TCP/IP connections of the interconnected entities, the resource constraint sensor nodes on WSN do not require a TCP/IP stack for handling end-to-end connections. A lightweight service layer is implemented on a sensor node for operations required by the interconnection. The strength and novelty of the model lies in the fact that this lightweight service layer relieves extra memory usage for end-to-end connection management. For determining limits of the proposed model, firstly, we examined the steps for request/response mechanism and modeled the gateway as a queueing system. By doing this, we derive a definition of the request traffic. For proof of concept, we performed comprehensive tests in simulation and real testbed environments for WLAN connection. WiSEGATE can achieve reasonable response times up to 80 simultaneous connections from remote entities to WSN when WLAN PER is less than 0.2.  相似文献   
4.
With the recent advances in Micro Electro-Mechanical Systems (MEMS) and underwater imaging sensors, and cameras, underwater multimedia sensor networks (UMSNs) have been proposed and drawn the immediate attention of the research community. Underwater multimedia sensor networks enable several new applications, such as target tracking, advanced coastal multimedia surveillance, undersea explorations, image acquisition and classification, environmental monitoring, and disaster prevention. However, the practical realization of these currently designed and envisioned applications directly depends on reliable and quality-aware communication capabilities of the deployed UMSNs. This paper presents a comprehensive performance evaluation of error concealment and error correction algorithms for quality-aware image transmission over UMSNs. Specifically, different combinations of multipath transport,watermarking-based error concealment (EC), forward error correction (FEC) and adaptive retransmission mechanisms have been evaluated to combat underwater channel impairments and mitigate packet losses due to node failures and intrinsic underwater acoustic channel characteristics. In addition, two novel image quality assessment metrics have been proposed to obtain the predicted quality of the image depending on the channel and node failures. Comparative performance evaluations show that the EC approach reconstructs the distorted image as closely as the original one while avoiding the burden of retransmissions and consequent delay.  相似文献   
5.
Robust image and video communications have become more imperative due to the ubiquitous proliferation of multimedia applications over wireless sensor networks. In this work, the transmission distortions on the image data induced by both channel and instant node failures for Wireless Sensor Networks (WSN) are considered. The effect of two techniques and their integration with multipath transmission are investigated to compensate the multimedia distortions at the expense of incurring additional energy consumption and/or wasting bandwidth resources. First technique is watermarking based error concealment utilizing discrete wavelet transform for embedding downsized replicas of original image into itself. The other is conventional Reed–Solomon (RS) coding utilizing additional information bits to correct bit/symbol errors. Performance results obtained from extensive simulations utilizing a communication and energy model applicable to WSN show that error concealment (EC) integrated schemes, especially EC with multipath fusion (ECMF), are more promising to compensate losses than RS-coding-integrated and pure multipath transmission techniques in WSN.  相似文献   
6.
Wireless multimedia sensor networks (WMSNs), having inherent features and limited resources, require new quality of service (QoS) protocols for real-time and multimedia applications. In this paper, we present a cross-layer QoS architecture (QoSMOS), that unifies network and link layers into a single communication module for QoS provisioning. Based on QoSMOS architecture, we developed an example reference cross-layer protocol, named cross-layer communication protocol (XLCP), enabling scalable service differentiation in WMSNs. Comprehensive analysis of simulation results indicate that the proposed architecture successfully differentiates service classes in terms of soft delay, reliability and throughput domains. A comparative analysis of XLCP and its counterparts is also given to show the superiority of the cross-layer protocol.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号