首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13493篇
  免费   727篇
  国内免费   92篇
工业技术   14312篇
  2023年   294篇
  2022年   516篇
  2021年   809篇
  2020年   621篇
  2019年   652篇
  2018年   838篇
  2017年   652篇
  2016年   684篇
  2015年   444篇
  2014年   646篇
  2013年   1177篇
  2012年   718篇
  2011年   908篇
  2010年   613篇
  2009年   552篇
  2008年   500篇
  2007年   411篇
  2006年   365篇
  2005年   286篇
  2004年   228篇
  2003年   211篇
  2002年   193篇
  2001年   110篇
  2000年   108篇
  1999年   102篇
  1998年   172篇
  1997年   124篇
  1996年   100篇
  1995年   115篇
  1994年   83篇
  1993年   92篇
  1992年   72篇
  1991年   52篇
  1990年   56篇
  1989年   55篇
  1988年   68篇
  1987年   52篇
  1986年   44篇
  1985年   55篇
  1984年   69篇
  1983年   49篇
  1982年   46篇
  1981年   36篇
  1980年   45篇
  1979年   35篇
  1978年   32篇
  1977年   29篇
  1976年   43篇
  1975年   32篇
  1974年   21篇
排序方式: 共有10000条查询结果,搜索用时 122 毫秒
1.
In the current work, numerical simulations are achieved to study the properties and the characteristics of fluid flow and heat transfer of (Cu–water) nanofluid under the magnetohydrodynamic effects in a horizontal rectangular canal with an open trapezoidal enclosure and an elliptical obstacle. The cavity lower wall is grooved and represents the heat source while the obstacle represents a stationary cold wall. On the other hand, the rest of the walls are considered adiabatic. The governing equations for this investigation are formulated, nondimensionalized, and then solved by Galerkin finite element approach. The numerical findings were examined across a wide range of Richardson number (0.1 ≤ Ri ≤ 10), Reynolds number (1 ≤ Re ≤ 125), Hartmann number (0 ≤ Ha ≤ 100), and volume fraction of nanofluid (0 ≤ φ ≤ 0.05). The current study's findings demonstrate that the flow strength increases inversely as the Reynolds number rises, which pushes the isotherms down to the lower part of the trapezoidal cavity. The Nuavg rises as the Ri rise, the maximum Nuavg = 10.345 at Ri = 10, Re = 50, ϕ = 0.05, and Ha = 0; however, it reduces with increasing Hartmann number. Also, it increase by increasing ϕ, at Ri = 10, the Nuavg increased by 8.44% when the volume fraction of nanofluid increased from (ϕ = 0–0.05).  相似文献   
2.
Multimedia Tools and Applications - For many vision applications, robust detection and tracking of pedestrians in image sequences are essential. In this paper, a hybrid system for pedestrian...  相似文献   
3.

Naturally, to analyze an image accurately, all the similar objects within it should be separated to pay attention to the most important object for reaching more details and hence achieving better accuracy. Therefore, multilevel thresholding is an indispensable image processing technique in the field of image segmentation and is employed widely to separate those similar objects. However, with increasing thresholds, the existing image segmentation techniques might suffer from exponentially-grown computational cost and low accuracy due to local optima shortage. Therefore, in this paper, a new image segmentation algorithm based on the improved marine predators algorithm (MPA) is proposed. MPA is improved using a strategy to find a number of the worst solutions within the population then tries to search for other better ones for those solutions by moving them gradually towards the best solutions to avoid accelerating to local optima and randomly within the search space based on a certain probability. In addition, this number of the worst solutions is increased with the iteration. This strategy is known as the linearly increased worst solutions improvement strategy (LIS). Also, we suggested that apply the ranking strategy based on a novel updating scheme, namely ranking-based updating strategy (RUS), on the solutions that could find better solutions in the last number iterations, perIter, in the hope of finding better solutions near it. RUS updates the particles/solutions which could not find better solutions than the best-local one in a number of consecutive iterations, with those that are generated based on a novel updating strategy. LIS is integrated with MPA to produce a new segmentation meta-heuristic algorithm abbreviated as MPALS. Also, MPALS and RUS are combined to tackle ISP in a strong variant abbreviated as HMPA for overcoming the image segmentation problem. The two proposed algorithms are validated on 14 test images and compared with seven state-of-the-arts meta-heuristic algorithms. The experimental results show the effectiveness of HMPA with increasing the threshold levels compared to the seven state-of-the-arts algorithms when segmenting an image, while their performance is roughly the same for the image with a small threshold level.

  相似文献   
4.
Multimedia Tools and Applications - Nowadays, heart diseases are significantly contributing to deaths all over the world. Thus, heart-disease prediction has garnered considerable attention in the...  相似文献   
5.

Pilot contamination is one of the main impairments in multi-cell massive Multiple-Input Multiple-Output systems. In order to improve the channel estimation in this context, we propose to use a semi-blind channel estimator based on the constant modulus algorithm (CMA). We consider an enhanced version of the CMA namely the Modified CMA which modifies the cost function of the CMA algorithm to the sum of cost functions for real and imaginary parts. Due to pilot contamination, the channel estimator may estimate the channel of a contaminating user instead of that of the user of interest (the user for which the Base Station wants to estimate the channel and then the data). To avoid this, we propose to scramble the users sequences before transmission. We consider different methods to perform unitary scrambling based on rotating the transmitted symbols (one Dimensional (1-D) scrambling) and using unitary matrices (two-Dimensional (2-D) scrambling). At the base station, the received sequence of the user of interest is descrambled leading to a better convergence of the channel estimator. We also consider the case where the Automatic Repeat reQuest protocol is used. In this case, using scrambling leads to a significant gain in terms of BLock Error Rate due to the change of the contaminating users data from one transmission to another induced by scrambling.

  相似文献   
6.
Journal of Materials Science: Materials in Electronics - In this paper, we study the phosphorescence rise and decay time responses of Eu2+- and Dy3+-doped strontium aluminates prepared by different...  相似文献   
7.
Process analytics is one of the popular research domains that advanced in the recent years. Process analytics encompasses identification, monitoring, and improvement of the processes through knowledge extraction from historical data. The evolution of Artificial Intelligence (AI)-enabled Electronic Health Records (EHRs) revolutionized the medical practice. Type 2 Diabetes Mellitus (T2DM) is a syndrome characterized by the lack of insulin secretion. If not diagnosed and managed at early stages, it may produce severe outcomes and at times, death too. Chronic Kidney Disease (CKD) and Coronary Heart Disease (CHD) are the most common, long-term and life-threatening diseases caused by T2DM. Therefore, it becomes inevitable to predict the risks of CKD and CHD in T2DM patients. The current research article presents automated Deep Learning (DL)-based Deep Neural Network (DNN) with Adagrad Optimization Algorithm i.e., DNN-AGOA model to predict CKD and CHD risks in T2DM patients. The paper proposes a risk prediction model for T2DM patients who may develop CKD or CHD. This model helps in alarming both T2DM patients and clinicians in advance. At first, the proposed DNN-AGOA model performs data preprocessing to improve the quality of data and make it compatible for further processing. Besides, a Deep Neural Network (DNN) is employed for feature extraction, after which sigmoid function is used for classification. Further, Adagrad optimizer is applied to improve the performance of DNN model. For experimental validation, benchmark medical datasets were used and the results were validated under several dimensions. The proposed model achieved a maximum precision of 93.99%, recall of 94.63%, specificity of 73.34%, accuracy of 92.58%, and F-score of 94.22%. The results attained through experimentation established that the proposed DNN-AGOA model has good prediction capability over other methods.  相似文献   
8.
Suzuki-Miyaura (S-M) is regarded the most powerful way for synthesis biaryls, triaryls, or incorporating of substituted aryl moieties in organic preparation by the cross-coupling of aryl boronic acid with aryl halides using the Pd catalyst. This work reports the combining of the hydrothermal and microwave-assisted protocol to convert the glucose to magnetic carbon spheres (Fe3O4-CSPs) decorated with Pd nanoparticles (NPs) as the catalyst for Suzuki-Miyaura cross-coupling reactions. The physicochemical properties in the produced composite were examined using FESEM, HRTEM, nitrogen isotherms, Raman spectroscopy, FTIR, XPS, and XRD. The as-fabricated composite Pd/Fe3O4-CSPs is mostly spherical with a core–shell structure and possesses a great surface area of 253.2 m2·g-1. Its catalytic performance demonstrates that the composite has excellent stability and high tolerance Suzuki-Miyaura cross-coupling reactions in 30 min at 80 ℃. Both activated and deactivated aryl halides provided excellent yield. The as-fabricated catalyst was recycled for up to four catalytic cycles without a substantial decline in performance. Moreover, this research offers a facile roadmap for synthesizing Pd/Fe3O4-CSPs composites and promoting the practical implementation of Pd/Fe3O4-CSPs catalysts for organic transformation processes.  相似文献   
9.
Catalysis Letters - To avoid the aggregation problem and activity loss of nickel oxide (NiO) nanoparticles (NPs) in organic reactions, NiO NPs were incorporated into TUD-1 mesoporous material....  相似文献   
10.
Journal of Inorganic and Organometallic Polymers and Materials - Due to their excellent properties, polymides (PIs) result promising as high-performance materials in different technological fields....  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号