首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88821篇
  免费   1305篇
  国内免费   459篇
工业技术   90585篇
  2023年   122篇
  2022年   238篇
  2021年   469篇
  2020年   285篇
  2019年   308篇
  2018年   14692篇
  2017年   13572篇
  2016年   10179篇
  2015年   777篇
  2014年   456篇
  2013年   638篇
  2012年   3386篇
  2011年   9659篇
  2010年   8449篇
  2009年   5685篇
  2008年   6911篇
  2007年   7888篇
  2006年   231篇
  2005年   1294篇
  2004年   1196篇
  2003年   1249篇
  2002年   593篇
  2001年   146篇
  2000年   225篇
  1999年   119篇
  1998年   205篇
  1997年   153篇
  1996年   141篇
  1995年   81篇
  1994年   74篇
  1993年   66篇
  1992年   47篇
  1991年   69篇
  1990年   36篇
  1989年   31篇
  1988年   33篇
  1986年   35篇
  1985年   32篇
  1968年   44篇
  1967年   36篇
  1966年   44篇
  1965年   47篇
  1963年   29篇
  1960年   31篇
  1959年   37篇
  1958年   37篇
  1957年   36篇
  1956年   35篇
  1955年   64篇
  1954年   69篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
1.
2.
This paper reports an investigation on the structure-properties correlation of trivalent metal oxide (Al2O3)-doped V2O5 ceramics synthesized by the melt-quench technique. XRD patterns confirmed a single orthorhombic V2O5 phase formation with increasing strain on the doping of Al2O3 in place of V2O5 in the samples estimated by Williamson-Hall analysis. FTIR and Raman investigations revealed a structural change as [VO5] polyhedra converts into [VO4] polyhedra on the doping of Al2O3 into V2O5. The optical band gap was found in a wide semiconductor range as confirmed by UV–visible spectroscopy analysis. The thermal and conductivity behavior of the prepared samples were studied using thermal gravimetric analysis (TGA) and impedance analyzer, respectively. All the prepared ceramics exhibit good DC conductivity (0.22–0.36 Sm-1) at 400 ?C. These materials can be considered for intermediate temperature solid oxide fuel cell (IT-SOFC)/battery applications due to their good conductivity and good thermal stability.  相似文献   
3.
Dehydrins (DHNs) play an important role in abiotic stress tolerance in a large number of plants, but very little is known about the function of DHNs in pepper plants. Here, we isolated a Y1SK2-type DHN gene “CaDHN3” from pepper. To authenticate the function of CaDHN3 in salt and drought stresses, it was overexpressed in Arabidopsis and silenced in pepper through virus-induced gene silencing (VIGS). Sub-cellular localization showed that CaDHN3 was located in the nucleus and cell membrane. It was found that CaDHN3-overexpressed (OE) in Arabidopsis plants showed salt and drought tolerance phenotypic characteristics, i.e., increased the initial rooting length and germination rate, enhanced chlorophyll content, lowered the relative electrolyte leakage (REL) and malondialdehyde (MDA) content than the wild-type (WT) plants. Moreover, a substantial increase in the activities of antioxidant enzymes; including the superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and lower hydrogen peroxide (H2O2) contents and higher O2•− contents in the transgenic Arabidopsis plants. Silencing of CaDHN3 in pepper decreased the salt- and drought-stress tolerance, through a higher REL and MDA content, and there was more accumulation of reactive oxygen species (ROS) in the CaDHN3-silenced pepper plants than the control plants. Based on the yeast two-hybrid (Y2H) screening and Bimolecular Fluorescence Complementation (BiFC) results, we found that CaDHN3 interacts with CaHIRD11 protein in the plasma membrane. Correspondingly, the expressions of four osmotic-related genes were significantly up-regulated in the CaDHN3-overexpressed lines. In brief, our results manifested that CaDHN3 may play an important role in regulating the relative osmotic stress responses in plants through the ROS signaling pathway. The results of this study will provide a basis for further analyses of the function of DHN genes in pepper.  相似文献   
4.

Surface integrity characterization of manufactured component is very important as it significantly affects the in-service performance of the component. Till now, surface integrity was evaluated using conventional measurement technique like microhardness tester, X-ray diffraction, optical microscopy and surface roughness tester. But, this technique being laboratory based cannot be used for in-service monitoring of the surface integrity. The present study focuses on the characterization of surface integrity upon electric discharge machined sample using non-destructive magnetic Barkhausen noise technique. Electric discharge machining was performed in die-sinking mode on die steel using copper–tungsten electrode (negative polarity). Experiment was performed by selecting different levels of peak current, gap voltage and pulse on time. Surface integrity characteristics like microhardness change, residual stress, microstructural alteration and surface roughness were analysed using microhardness tester, X-ray diffraction, optical microscopy and surface roughness tester, respectively, and were then correlated with magnetic parameter like root mean square value and peak value obtained from Barkhausen noise signal. The results show a good correlation between magnetic parameter (RMS and Peak value) of Barkhausen noise with the microhardness and surface roughness of the machined sample.

  相似文献   
5.
Hassan  Lovelu  Khan  K. A. 《Microsystem Technologies》2020,26(3):1031-1041

The efficiency of any electric cell or battery is very important. To keep it in mind it has been studied the columbic efficiency, voltaic efficiency and energy efficiency of a PKL (Pathor Kuchi Leaf) Quasi Voltaic Cell or Modified Voltaic Cell. It was found that the columbic efficiency data illustrated that this efficiency was lower comparing to other efficiencies may be the absence of salt bridge or separator between the electrodes. Because, our designed and fabricated PKL cell does not have any salt bridge. So that the internal resistance is lower than the traditional voltaic cell and as a result more current was found. The voltage and current changes with time and I–V characteristics for PKL unit cell, module, panel and array have also been studied. It is shown that the voltaic and energy efficiency have been studied. However, the highest efficiency was obtained for 40% PKL sap with 5% secondary salt in 55% aqueous solution, which implies that the concentration of PKL juice can play an important role regarding efficiency. It was also found that the average energy efficiency was 97.43% and it was also found that the average voltaic efficiency was 57.29%. Finally, morphological study FESEM (Field Emission Scanning Electron Microscopy) has also been performed. It is seen that the results confirmed that Zn was deposited on the Cu surface during the electro deposition process in PKL solution. Using AAS, it has been measured the concentration of [Cu2+] as a reactant ion and the concentration of [Zn2+] as a product ion those have been tabulated and graphically discussed. The variation of pH has also been studied with time and which was also tabulated and graphically discussed.

  相似文献   
6.
7.
8.
9.
Combined photochemical arylation, “nuisance effect” (SNAr) reaction sequences have been employed in the design of small arrays for immediate deployment in medium-throughput X-ray protein–ligand structure determination. Reactions were deliberately allowed to run “out of control” in terms of selectivity; for example the ortho-arylation of 2-phenylpyridine gave five products resulting from mono- and bisarylations combined with SNAr processes. As a result, a number of crystallographic hits against NUDT7, a key peroxisomal CoA ester hydrolase, have been identified.  相似文献   
10.
In this work, the physical properties of nanocrystalline samples of La0.7Sr0.3Mn1−xFexO3 (0.0 ≤ x ≤ 0.20) perovskite manganites synthesized by the reverse micelle (RM) technique were explored in detail. The phase purity, crystal structure, and crystallite size of the samples were determined using X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. All the samples had rhombohedral crystal structure and crystallite size increased with increase in Fe content in La0.7Sr0.3MnO3. The scanning electron micrographs (SEMs) exhibited smooth surface morphology and nonuniform shape of the particles. The optical properties studied using UV-visible absorption spectroscopy revealed a decrease in the absorbance and optical band gap with an increase in Fe content in La0.7Sr0.3MnO3 compound. The temperature-dependent resistivity measurements revealed semiconducting nature of x = 0 and 0.1 samples up to the studied temperature range, while a metal-to-insulator transition was observed at higher Fe doping. Magnetic studies revealed weak ferromagnetism in all the samples and a reduction in the maximum magnetization with an increase in Fe content. A close correlation between electrical transport and magnetic properties was observed with the doping of Fe ion in La0.7Sr0.3MnO3 at Mn site. These results advocate strong interactions associated with the double exchange mechanism among Fe3+ and Mn3+ ions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号