首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   3篇
工业技术   3篇
  2020年   1篇
  2019年   2篇
排序方式: 共有3条查询结果,搜索用时 46 毫秒
1
1.
马尔可夫聚类算法(MCL)是在大规模生物网络中寻找模块的一个有效方法,能够挖掘网络结构和功能影响力较大的模块。算法涉及到大规模矩阵计算,因此复杂度可达立方阶次。针对复杂度高的问题,提出了基于消息传递接口(MPI)的并行化马尔可夫聚类算法以提高算法的计算性能。首先,生物网络转化成邻接矩阵;然后,根据算法的特性,按照矩阵的规模判断并重新生成新矩阵以处理非平方倍数矩阵的计算;其次,并行计算通过按块分配的方式能够有效地实现任意规模矩阵的运算;最后,循环并行计算直至收敛,得到网络聚类结果。通过模拟网络和真实生物网络数据集的实验结果表明,与全块集体式通信(FCC)并行方法相比,平均并行效率提升了10个百分点以上,因此可以将该优化算法应用在不同类型的大规模生物网络中。  相似文献   
2.
Graphlet Degree Vector (GDV)是一种研究生物网络的重要方法,能揭示生物网络中各节点与其局部网络结构的相关性,但随着需要挖掘的自同构轨道数量的增加以及生物网络规模的增大,GDV方法的时间复杂度会呈指数级增长。针对这个问题,在现有串行GDV方法的基础上,实现了基于消息传递接口(MPI)的GDV方法并行化;此外又将GDV方法进行了改进并将改进后的方法实现了并行优化,改进后的方法在寻找不同节点自同构轨道的过程中优化了计算过程以解决重复计算的问题,同时结合负载均衡策略合理分配任务。模拟网络数据和真实生物网络数据上的实验结果表明,并行化的GDV方法与改进后的并行化GDV方法都具有较好的并行性能,并且对不同类型不同规模的网络都具有较强的适用性,扩展性强,可有效地保持寻找网络中自同构轨道的高效率。  相似文献   
3.
生物复杂网络motif发现是一种研究生物网络的重要方法,它基于复杂网络的理论研究,以新的视角来研究生命现象和生命机制,但是在处理较大的网络规模或者需挖掘较大的motif时计算效率低。针对这个问题,在现有串行网络motif发现算法ESU的基础上,提出一种基于消息传递接口(MPI)的并行化ESU算法。该方法在ESU计算过程中优化了节点值以解决节点值依赖问题,并以ESU算法的子图发现策略统计各节点子图数,利用动态规划策略寻找最佳节点分配策略以解决负载不均衡问题。模拟网络数据和真实生物网络数据的实验结果表明,并行化ESU算法优化了节点值依赖问题,实现了基于动态规划的负载均衡策略,其运行时间比串行算法缩短了90%,并且该并行算法对不同类型不同规模的网络都具有较强的适用性,有效地提高了网络motif发现问题的计算效率。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号