首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
工业技术   9篇
  2023年   2篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
试验钢为含钒0.080%的Q345钢,氮含量按0%、0.022%、0.034%、0.042%逐渐升高。利用Thermo-Calc软件进行了热力学分析计算,结果表明:钢中不含氮时,V(C,N)在奥氏体中析出温度较低,为933℃,当钢中氮含量为0.042%时,在奥氏体中析出温度1 340℃。通过透射电镜,可以发现含钒Q345钢随着氮含量增高,钢中析出了大量的V(C,N)弥散在钢中,起到析出强化作用和细化晶粒作用。金相组织得到明显细化。增氮后钢的力学性能得到明显增强,不含氮时试验钢的屈服强度486 MPa,抗拉强度686 MPa,当氮含量为0.034%时,试验钢的屈服强度为610 MPa,抗拉强度732 MPa,钢的屈服强度提高了124 MPa。抗拉强度提高了46 MPa。并且通过拉伸断口判断,随着氮含量的增加,Q345钢的塑韧性得到增强。  相似文献   
2.
核电焊材用钢508 Ⅲ(/%:0.09~0.12C,0.30~0.40Si,1.45~1.65Mn,≤0.008P,≤0.008S,0.45~0.60Mo,0.60~0.75Ni)的生产工艺流程为20t EAF-LF-VD-4t铸锭-锻造150 mm×150 mm坯-轧制Φ5.5mm盘条。采用精选炉料,以及高碱度渣、高FeO含量,钢水温度1550~1570℃等措施控制,电弧炉终点[P]≤0.002%,并选用低磷合金,使钢中磷含量≤0.006%;LF采用硅钙合金沉淀脱氧,SiC粉扩散脱氧、CaO-Al2O3-SiO2渣系,碱度5.0~5.5,VD真空度≤67Pa,Ar流量30~50 L/min,保护浇铸等措施后,3炉钢的分析结果表明,钢中气体含量为1.3×10-6~1.5×10-6[H],10×10-6~14×10-6[O]和44×10-6~58×10-6[N],满足核电焊材用钢508Ⅲ洁净度的要求。  相似文献   
3.
通过增加氮质量分数、降低镍质量分数研究了对SAF2205双相不锈钢组织及力学性能的影响。结果表明,增氮降镍后,当氮质量分数和镍质量分数在合适的范围(w(N)≤0.26%、w(Ni)≥5.940%)内时,试验钢的奥氏体相区扩大,奥氏体晶粒变小且均匀;随着镍质量分数降低,晶粒变得粗大,但冲击吸收功和强度均有所提升,其中A_(kV)由199.7增至232.5J,R_m由538提高到787 MPa,Rp0.2由484提升到692 MPa,此时钢的塑性指标降低较小。  相似文献   
4.
5.
刘培军  储满生  柳政根  闫瑞军  唐珏 《钢铁》2023,(12):156-164
不锈钢粉尘是钢铁冶炼过程产生的典型二次固废,其含有大量的有价金属铁、铬和镍的氧化物,具有较高的回收利用价值。碳热还原法是一种高效冶炼金属矿物的火法工艺,使用碳热还原法处理不锈钢粉尘过程中,还原渣发生的粉化反应及冷却后的粉化效果会影响还原渣体系的理化性能,影响还原产物渣和金属的分离效果。通过高温试验研究了粉化控制过程工艺参数保温温度、保温时间和降温速率对还原渣粉化效果的影响。试验结果表明,不锈钢粉尘碳热还原-粉化控制后获得的还原渣自粉化率及自粉化渣的质量分数随着保温温度的升高呈现先增加后降低的趋势;还原渣自粉化率及自粉化渣的质量分数随着保温时间的增加呈现逐渐增长的趋势;还原渣自粉化率及自粉化渣的质量分数随着降温速率的降低呈现逐渐增长的趋势。在还原温度为1 450℃、升温速率为10℃/min、还原时间为20 min、碳氧比为0.8、控制保温温度为1 100℃、保温时间为15 min、降温速率为15℃/min的条件下,还原渣的自粉化率达到95.26%,自粉化渣的质量分数达到91.36%。在不锈钢粉尘碳热还原的过程中,还原渣中Ca2SiO4的生成反应...  相似文献   
6.
试验研究了在AZ91D镁合金中添加不同质量分数的稀土元素Y(w(Y)=0.4%、0.8%、1.2%、1.6%、2.0%)对其组织和力学性能的影响。结果表明,添加适量的稀土元素Y能改善AZ91D镁合金的组织并提高其力学性能。当w(Y)=1.2%时,对AZ91D镁合金的晶粒细化作用效果最佳,此时,晶粒尺寸为46.15μm,相比未加入稀土元素Y的AZ91D镁合金细化幅度为27.85%。稀土元素Y的加入还能提高AZ91D镁合金的硬度、抗拉强度、伸长率等性能,当w(Y)=1.2%时,AZ91D镁合金的各项力学性能最佳:维氏硬度为99.7 HV,室温抗拉强度为299 N/mm~2,伸长率为9.5%;200℃的抗拉强度为161.75 N/mm~2,伸长率为5.8%。  相似文献   
7.
8.
9.
高炉使用金属化炉料作为一种新型的低碳炼铁技术为高炉炼铁过程深度降碳提供了新的可能。由于金属化炉料的易再氧化性,装入高炉炉顶中的金属化炉料是否能被炉顶煤气中的CO2再氧化成为一个需要关注的问题。对70%金属化率炉料在体积分数为50%CO2+50%CO气体混合物中的非等温反应过程动力学进行了研究。采用KAS动力学分析方法计算了反应过程的表观活化能和反应机理,分析了反应过程的特征温度。结果表明,70%金属化率炉料在50%CO2+50%CO混合气氛中的非等温反应过程表现为单步反应行为,反应的最佳机理模型为化学反应控制的A1模型。金属化炉料低温下反应需要克服较大的反应能垒,主要反应阶段的表观活化能为114.22 kJ/mol,指前因子为2 785/s。金属化炉料反应过程随加热速率增大存在滞后现象,加热速率从5 K/min增大到20 K/min时,反应开始温度从1 045 K增加至1 140 K,快速反应温度从1 267 K增加到1 470 K,而实际高炉炉顶温度远低于1 045 K,因此金属化炉料在高炉顶部不...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号