首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
工业技术   8篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
排序方式: 共有8条查询结果,搜索用时 296 毫秒
1
1.
绿色增材再制造技术在中国已进入了新的发展阶段。探讨了绿色增材再制造技术的内涵与特征,分析了发展绿色增材再制造技术面临的机遇与挑战,提出了绿色增材再制造技术未来的主攻方向。推行绿色增材再制造技术,构建绿色增材再制造技术体系,不仅有利于实现资源环境的可持续发展,也契合《中国制造2025》提出的全面推进绿色制造的战略重点。  相似文献   
2.
铜合金表面超音速微粒沉积镍基涂层的耐蚀性能研究   总被引:4,自引:4,他引:0  
目的研究铜合金表面镍基合金涂层的耐腐蚀性能,解决铜合金表面腐蚀损伤问题。方法采用超音速微粒沉积技术在黄铜表面制备镍基合金涂层,通过电化学方法和中性盐雾实验对黄铜基体及镍基合金涂层的耐腐蚀性能进行测试。结果涂层的腐蚀电流密度较基体降低了34倍。涂层表面生成的连续且致密的氧化膜阻止了腐蚀的进一步发生,在盐雾腐蚀时间进行到500 h时,腐蚀速度接近于零,涂层腐蚀缓慢。结论超音速微粒沉积技术可以制备耐腐蚀性能优异的镍基合金涂层,并且可以显著提高黄铜的基体耐蚀性。  相似文献   
3.
采用超音速微粒沉积技术在5083铝合金表面制备γ-TiAl基Ti-45Al-7Nb-2V-2Cr合金耐蚀防护涂层,实现γ-TiAl基涂层的原态制备,并对涂层微观结构及电化学性能进行研究。结果表明:在涂层中的Al、V元素富集区,喷涂颗粒发生显著的塑性变形,有利于TiAl合金颗粒的沉积成形;通过在5083铝合金表面制备TiAl合金防护涂层可使其与TA2钛合金的接触腐蚀电流由16.2μA降为0.191μA,接触腐蚀敏感性由E级降到A级,喷涂件可与TA2钛合金直接接触使用,解决了铝合金与钛合金的接触腐蚀防护问题。  相似文献   
4.
为提高HSn62-1铜合金表面抗点蚀能力,解决高铝青铜涂层制备过程中相变和氧化造成涂层耐腐蚀性能降低的问题,采用低温超音速喷涂技术,在HSn62-1铜合金表面制备不含γ2相的高铝青铜涂层。利用场发射扫描电镜(SEM)、电子能谱仪(EDS)、X射线衍射仪等分析粉末和涂层的组织结构、表/截面形貌等特征;利用电化学工作站、盐雾腐蚀试验箱等测定分析Na Cl溶液环境中涂层及基体的耐腐蚀性能及失效机制。结果表明:制备的高铝青铜涂层结构致密,结合良好,无γ2相和氧化夹杂生成,涂层腐蚀敏感性均一;涂层自腐蚀电流密度为6.938μA/cm2,较HSn62-1铜合金基体降低了1个数量级,涂层自身具有较好的耐腐蚀性能,可有效阻挡腐蚀介质向涂层更深处渗入;盐雾环境中,高铝青铜涂层表面腐蚀产物薄膜反复地剥落和生成使其腐蚀失效机制宏观上表现为均匀腐蚀。  相似文献   
5.
目的研究超音速微粒沉积过程中,不同颗粒的沉积状态以及后续颗粒的夯实作用对涂层沉积的影响规律。方法采用显式非线性有限元软件LS-DYNA模拟单层颗粒与基体的碰撞,采用自动二维单面接触ASS2D(Automatic 2-D single surface contact)求解接触过程,研究超音速微粒沉积中多颗粒沉积行为、后续颗粒碰撞对涂层成形的影响规律。采用超音速微粒沉积技术在铝合金表面制备Al-Si涂层,通过扫描电子显微镜(SEM)分析涂层的表面/截面形貌,进而验证模型的可靠性。结果多颗粒沉积过程中,颗粒与颗粒之间相互嵌合,形成互锁效应,有利于提高涂层的结合强度。后续颗粒对先沉积颗粒具有夯实作用,夯实作用使颗粒扁平化程度加大,同时使颗粒之间紧密结合,存在夯实作用的颗粒压缩率提高至3倍以上,有效避免了涂层孔隙和裂纹的形成。通过观察所制备的Al-Si涂层的表面/截面形貌,证明模型具有可靠性。结论采用数值模拟方法探讨超音速微粒沉积多颗粒在基体上的变形行为,可为超音速微粒沉积的应用提供理论依据。  相似文献   
6.
采用超声速微粒沉积技术在不同丙烷压力(0.469 MPa,0.496 MPa,0.524 MPa,0.551 MPa)条件下制备4种铝青铜涂层,采用环境扫描电子显微镜、X射线衍射仪、能谱仪等试验仪器表征涂层的微观组织、相结构以及氧元素质量分数等,运用显微硬度仪、拉伸试验机和CETR摩擦磨损试验机等试验设备分析涂层的力学性能和摩擦学性能。结果表明,丙烷压力对涂层组织结构及力学性能有显著的影响,随着丙烷压力的升高,涂层孔隙率与氧元素质量分数呈负相关关系,在丙烷压力为0.524 MPa时,涂层孔隙率为0.8%,氧元素质量分数为0.97%,更接近其平衡点;丙烷压力为0.524 MPa以下时,涂层较原始粉末物相无明显变化,主要仍为α+β'+K相;涂层显微硬度、结合强度及耐磨性能随丙烷压力的升高均呈先增大后减小的趋势变化,丙烷压力为0.524 MPa时,涂层的力学性能和耐磨性能达到最优。  相似文献   
7.
为提高再制造铜制衬套的耐磨损性能,运用超音速微粒沉积技术在铜合金基体表面制备镍基合金涂层,采用SEM,XRD和EDS等试验仪器表征涂层的组织、相结构以及氧含量等,运用显微硬度仪、拉伸试验机和CETR摩擦磨损试验机等试验设备分析涂层的力学性能和摩擦学性能。结果表明:超音速微粒沉积镍基合金涂层表面平整,结构致密,孔隙率低(0.4%),涂层与基体结合良好,结合强度达52.8 MPa,涂层平均显微硬度HV0.2为703(较基体提高7倍以上),磨损体积仅为基体的1.48%,对提高再制造铜制衬套的使用寿命具有重要意义。  相似文献   
8.
周超极  朱胜  王晓明  韩国峰  周克兵  徐安阳 《材料导报》2018,32(19):3444-3455, 3464
热喷涂技术是再制造工程的关键支撑技术之一,在高端装备零部件防磨抗蚀方面发挥着重要作用,是延长损伤零部件服役寿命的重要手段。热喷涂技术主要应用于装备零部件的表面防护、尺寸恢复和增材制造,在航空航天、燃气轮机、石油化工、交通运输等领域具有广阔的应用前景和发展空间。然而,随着复杂工况条件下高端装备对涂层性能要求的不断提高以及其他表面技术的蓬勃发展,热喷涂技术面临着提高涂层质量和性能的挑战。就涂层可靠性而言,由于热喷涂涂层层间结合有限、内部缺陷复杂,导致热喷涂涂层,特别是敏感材料的涂层质量通常不稳定,涂层抗拉、抗扭以及抗剪切性能较差,无法应用于高速、重载等环境。因此,阐明热喷涂涂层的缺陷形成机理,发展热喷涂涂层组织结构调控的新方法是近期热喷涂领域的研究热点和重要方向。国内外众多学者通过多年深入研究,采用SEM、TEM、MIP、XMT等手段表征了热喷涂涂层内部缺陷的形成机制与分布规律,建立了涂层微观结构参量与涂层重要力学指标间的映射关系模型,证实了涂层内部固有微观缺陷是限制涂层性能提升的关键症结。为突破制约涂层性能提升的瓶颈,研究者们致力于热喷涂涂层后处理理论及工艺研究,从组织结构调控的角度出发,改善涂层的性能。目前所采用的后处理方法主要包括重熔处理、退火处理、热等静压、喷丸和滚压强化等,有力地消除或减少了涂层内部的贯通孔隙,提高了粒子间的边界融合,改善了涂层内部残余应力的分布状况,提升了涂层的力学性能、耐磨损及抗腐蚀性能。但是从实际应用的角度考虑,目前采用的后处理方法的处理温度通常较高,装备零部件长时间处于高温处理环境,可能会使涂层或基体材料的组织劣化,失去组织结构调控的意义。所以,现有热喷涂涂层组织结构调控方法的应用范围有限,针对热喷涂涂层的孔隙、裂纹等缺陷的改善尚无万全之策,仍需研究和发展涂层组织结构调控的新理论、新方法。高密度脉冲电流处理是一种对材料的极端非平衡处理过程,国内外学者在电致塑性、电致损伤愈合、电致晶粒细化等方面做了大量研究工作,并取得了丰硕的成果。从理论上讲,对于非均质的热喷涂涂层而言,由组织结构取向差异造成的内部电流场分布不均,在缺陷或夹杂周围会发生绕流集中现象,在脉冲电流的电、热、力效应耦合作用下有望提高涂层的均一性和致密性,实现涂层组织结构的调控和使役性能的改善。本文归纳了热喷涂涂层制备技术的优缺点、涂层缺陷形成机理及其对性能的影响规律,分析了现有涂层组织结构调控方法的利弊,介绍了脉冲电流在金属材料中的电、热、力效应,总结并分析了高密度脉冲电流处理方法在实现非均质热喷涂涂层组织结构调控和性能提升方面的理论可行性,并进行了初步实验验证,以期为丰富热喷涂涂层后处理方法、拓展热喷涂技术的应用领域提供参考。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号