首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8311篇
  免费   378篇
  国内免费   21篇
工业技术   8710篇
  2023年   69篇
  2022年   40篇
  2021年   152篇
  2020年   151篇
  2019年   139篇
  2018年   190篇
  2017年   185篇
  2016年   212篇
  2015年   158篇
  2014年   267篇
  2013年   358篇
  2012年   443篇
  2011年   507篇
  2010年   355篇
  2009年   407篇
  2008年   366篇
  2007年   302篇
  2006年   230篇
  2005年   218篇
  2004年   184篇
  2003年   166篇
  2002年   160篇
  2001年   118篇
  2000年   107篇
  1999年   171篇
  1998年   942篇
  1997年   518篇
  1996年   370篇
  1995年   231篇
  1994年   165篇
  1993年   220篇
  1992年   58篇
  1991年   42篇
  1990年   49篇
  1989年   42篇
  1988年   48篇
  1987年   43篇
  1986年   33篇
  1985年   33篇
  1984年   3篇
  1983年   8篇
  1982年   19篇
  1981年   15篇
  1980年   27篇
  1979年   3篇
  1978年   5篇
  1977年   57篇
  1976年   114篇
  1974年   2篇
  1955年   3篇
排序方式: 共有8710条查询结果,搜索用时 15 毫秒
1.
Obesity has become a pandemic that threatens the quality of life and discovering novel therapeutic agents that can reverse obesity and obesity-related metabolic disorders are necessary. Here, we aimed to identify new anti-obesity agents using a phenotype-based approach. We performed image-based high-content screening with a fluorogenic bioprobe (SF44), which visualizes cellular lipid droplets (LDs), to identify initial hit compounds. A structure-activity relationship study led us to yield a bioactive compound SB1501, which reduces cellular LDs in 3T3-L1 adipocytes without cytotoxicity. SB1501 induced the expression of gene products that regulate mitochondrial biogenesis and fatty acid oxidation in 3T3-L1 adipocytes. Daily treatment with SB1501 improved the metabolic states of db/db mice by reducing body fat mass, adipose tissue mass, food intake, and increasing glucose tolerance. The anti-obesity effect of SB1501 may result from perturbation of the PGC-1α–UCP1 regulatory axis in inguinal white adipose tissue and brown adipose tissue. These data suggest the therapeutic potential of SB1501 as an anti-obesity agent via modulating mitochondrial activities.  相似文献   
2.
3.
First examples of multichain (polycatenar) compounds, based on the π-conjugated [1]benzothieno[3,2-b]benzothiophene unit are designed, synthesized, and their soft self-assembly and charge carrier mobility are investigated. These compounds, terminated by the new fan-shaped 2-brominated 3,4,5-trialkoxybenzoate moiety, form bicontinuous cubic liquid crystalline (LC) phases with helical network structure over extremely wide temperature ranges (>200 K), including ambient temperature. Compounds with short chains show an achiral cubic phase with the double network, which upon increasing the chain length, is at first replaced by a tetragonal 3D phase and then by a mirror symmetry is broken triple network cubic phase. In the networks, the capability of bypassing defects provides enhanced charge carrier mobility compared to imperfectly aligned columnar phases, and the charge transportation is non-dispersive, as only rarely observed for LC materials. At the transition to a semicrystalline helical network phase, the conductivity is further enhanced by almost one order of magnitude. In addition, a mirror symmetry broken isotropic liquid phase is formed beside the 3D phases, which upon chain elongation is removed and replaced by a hexagonal columnar LC phase.  相似文献   
4.
As global air pollution becomes increasingly severe,various types of fibrous filters have been devel-oped to improve air filter performance.However,fibrous filters have limitations such as high packing density that generally causes high-pressure drop and ultimately deterioration in the filtration effi-ciency.High-pressure particulate matter precipitators are limited in terms of scope for commercialization because they require high voltage supplies and ozone generators.In this study,we develop fibrous fil-ters with enhanced durability and improved performance using metallized microfibers decorated with metal-organic-framework(MOF)nanocrystals.Not only does the efficiency of the developed filters remain at or above 97%for 0.50-1.5 μm PMs but the durability also significantly increases.In addi-tion,using the water purification ability of the MOF,we explore the dye degradation effect of the hybrid microfibers by immersing them into Rhodamine B aqueous solution.In such an experiment the Rho-damine B aqueous solution is completely purified by the presence of the hybrid microfibers under the UV irradiation.  相似文献   
5.
Journal of Mechanical Science and Technology - This study was conducted to analyze the flame characteristics, which is generated through the combustion process according to air/propane mixture...  相似文献   
6.
The anionic redox chemistries of layered cathode materials have been in focus recently due to an intriguing phenomenon that cannot be described by the number of electrons of transition metal ions. However, even though several studies have investigated the anionic redox chemistry of layered materials in terms of the charge compensation, the relationship between the origin of the structural behavior and anionic redox chemistry in layered materials remains poorly understood. In addition, a simultaneous redox process of transition metal ions could occur through the d bands interaction. Here, it is demonstrated that the anionic redox chemistry is associated with the anisotropic structural behavior of the layered cathode materials albeit without providing additional capacities exceeding the theoretical values. These findings will provide a foundation of a new chapter in the understanding of the properties of materials.  相似文献   
7.
The electrochemical reduction of carbon dioxide (CO2) to hydrocarbons is a challenging task because of the issues in controlling the efficiency and selectivity of the products. Among the various transition metals, copper has attracted attention as it yields more reduced and C2 products even while using mononuclear copper center as catalysts. In addition, it is found that reversible formation of copper nanoparticle acts as the real catalytically active site for the conversion of CO2 to reduced products. Here, it is demonstrated that the dinuclear molecular copper complex immobilized over graphitized mesoporous carbon can act as catalysts for the conversion of CO2 to hydrocarbons (methane and ethylene) up to 60%. Interestingly, high selectivity toward C2 product (40% faradaic efficiency) is achieved by a molecular complex based hybrid material from CO2 in 0.1 m KCl. In addition, the role of local pH, porous structure, and carbon support in limiting the mass transport to achieve the highly reduced products is demonstrated. Although the spectroscopic analysis of the catalysts exhibits molecular nature of the complex after 2 h bulk electrolysis, morphological study reveals that the newly generated copper cluster is the real active site during the catalytic reactions.  相似文献   
8.
To develop strategies for efficient photo‐electrochemical water‐splitting, it is important to understand the fundamental properties of oxide photoelectrodes by synthesizing and investigating their single‐crystal thin films. However, it is challenging to synthesize high‐quality single‐crystal thin films from copper‐based oxide photoelectrodes due to the occurrence of significant defects such as copper or oxygen vacancies and grains. Here, the CuBi2O4 (CBO) single‐crystal thin film photocathode is achieved using a NiO template layer grown on single‐crystal SrTiO3 (STO) (001) substrate via pulsed laser deposition. The NiO template layer plays a role as a buffer layer of large lattice mismatch between CBO and STO (001) substrate through domain‐matching epitaxy, and forms a type‐II band alignment with CBO, which prohibits the transfer of photogenerated electrons toward bottom electrode. The photocurrent densities of the CBO single‐crystal thin film photocathode demonstrate ?0.4 and ?0.7 mA cm?2 at even 0 VRHE with no severe dark current under illumination in a 0.1 m potassium phosphate buffer solution without and with H2O2 as an electron scavenger, respectively. The successful synthesis of high‐quality CBO single‐crystal thin film would be a cornerstone for the in‐depth understanding of the fundamental properties of CBO toward efficient photo‐electrochemical water‐splitting.  相似文献   
9.
Rhubarb is a well-known herb worldwide and includes approximately 60 species of the Rheum genus. One of the representative plants is Rheum palmatum, which is prescribed as official rhubarb due to its pharmacological potential in the Korean and Chinese pharmacopoeia. In our bioactive screening, we found out that the EtOH extract of R. palmatum inhibited hepatic stellate cell (HSC) activation by transforming growth factor β1 (TGF-β1). Chemical investigation of the EtOH extract led to the isolation of chrysophanol 8-O-glucoside, which was determined by structural analysis using NMR spectroscopic techniques and electrospray ionization mass spectrometry (ESIMS). To elucidate the effects of chrysophanol 8-O-glucoside on HSC activation, activated LX-2 cells were treated for 48 h with chrysophanol 8-O-glucoside, and α-SMA and collagen, HSC activation markers, were measured by comparative quantitative real-time PCR (qPCR) and western blotting analysis. Chrysophanol 8-O-glucoside significantly inhibited the protein and mRNA expression of α-SMA and collagen compared with that in TGF-β1-treated LX-2 cells. Next, the expression of phosphorylated SMAD2 (p-SMAD2) and p-STAT3 was measured and the translocation of p-STAT3 to the nucleus was analyzed by western blotting analysis. The expression of p-SMAD2 and p-STAT3 showed that chrysophanol 8-O-glucoside strongly downregulated STAT3 phosphorylation by inhibiting the nuclear translocation of p-STAT3, which is an important mechanism in HSC activation. Moreover, chrysophanol 8-O-glucoside suppressed the expression of p-p38, not that of p-JNK or p-Erk, which can activate STAT3 phosphorylation and inhibit MMP2 expression, the downstream target of STAT3 signaling. These findings provided experimental evidence concerning the hepatoprotective effects of chrysophanol 8-O-glucoside against liver damage and revealed the molecular basis underlying its anti-fibrotic effects through the blocking of HSC activation.  相似文献   
10.
In this study, we demonstrate the fabrication of TiO2 photocatalytic electrode by sol-gel and electrospinning technique. The anatase TiO2 nanofiber is successfully formed after thermal annealing at 260°C. As-prepared TiO2 photocatalytic electrode contains surface contamination, which includes a polymer binder such as ethyl cellulose, carbon by carbonization of polyvinylpyrrolidone, and residue polyvinylpyrrolidone. To efficiently remove the surface contaminants from the TiO2 photocatalytic electrode, we employ an atmospheric-pressure O2 plasma jet and the exposure time is controlled by the scanning rate. As the results, photodegradation efficiency of methylene blue is significantly enhanced with a scanning rate in the range of 100-500 μm/s and was saturated with a scanning rate in the range of 10-100 μm/s.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号