首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   4篇
工业技术   13篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2008年   1篇
  2007年   1篇
排序方式: 共有13条查询结果,搜索用时 31 毫秒
1.
Perovskite nanostructures have attracted much attention in recent years due to their suitability for a variety of applications such as photovoltaics, light-emitting diodes (LEDs), nanometer-size lasing, and more. These uses rely on the conductive properties of these nanostructures. However, electrical characterization of individual, thin perovskite nanowires has not yet been reported. Here, conductive atomic force microscopy characterization of individual cesium lead halide nanowires is presented. Clear differences are observed in the conductivity of nanowires containing only bromide and nanowires containing a mixture of bromide and iodide. The differences are attributed to a higher density of crystalline defects, deeper trap states, and higher inherent conductivity for nanowires with mixed bromide–iodide content.  相似文献   
2.
An important property of hybrid layered perovskite is the possibility to reduce its dimensionality to provide wider band gap and better stability. In this work, 2D perovskite of the structure (PEA)2(MA)n–1PbnBr3n+1 has been sensitized, where PEA is phenyl ethyl‐ammonium, MA is methyl‐ammonium, and using only bromide as the halide. The number of the perovskite layers has been varied (n) from n = 1 through n = ∞. Optical and physical characterization verify the layered structure and the increase in the band gap. The photovoltaic performance shows higher open circuit voltage (Voc) for the quasi 2D perovskite (i.e., n = 40, 50, 60) compared to the 3D perovskite. Voc of 1.3 V without hole transport material (HTM) and Voc of 1.46 V using HTM have been demonstrated, with corresponding efficiency of 6.3% and 8.5%, among the highest reported. The lower mobility and transport in the quasi 2D perovskites have been proved effective to gain high Voc with high efficiency, further supported by ab initio calculations and charge extraction measurements. Bromide is the only halide used in these quasi 2D perovskites, as mixing halides have recently revealed instability of the perovskite structure. These quasi 2D materials are promising candidates for use in optoelectronic applications that simultaneously require high voltage and high efficiency.  相似文献   
3.
Hybrid organometal halide perovskites are known for their excellent optoelectronic functionality as well as their wide‐ranging chemical flexibility. The composition of hybrid perovskite devices has trended toward increasing complexity as fine‐tuned properties are pursued, including multielement mixing on the constituents A and B and halide sites. However, this tunability presents potential challenges for charge extraction in functional devices. Poor consistency and repeatability between devices may arise due to variations in composition and microstructure. Within a single device, spatial heterogeneity in composition and phase segregation may limit the device from achieving its performance potential. This review details how the nanoscale elemental distribution and charge collection in hybrid perovskite materials evolve as chemical complexity increases, highlighting recent results using nondestructive operando synchrotron‐based X‐ray nanoprobe techniques. The results reveal a strong link between local chemistry and charge collection that must be controlled to develop robust, high‐performance hybrid perovskite materials for optoelectronic devices.  相似文献   
4.
5.
6.
7.
8.
We report a novel quantum dot (QD)-aptamer(Apt)-doxorubicin (Dox) conjugate [QD-Apt(Dox)] as a targeted cancer imaging, therapy, and sensing system. By functionalizing the surface of fluorescent QD with the A10 RNA aptamer, which recognizes the extracellular domain of the prostate specific membrane antigen (PSMA), we developed a targeted QD imaging system (QD-Apt) that is capable of differential uptake and imaging of prostate cancer cells that express the PSMA protein. The intercalation of Dox, a widely used antineoplastic anthracycline drug with fluorescent properties, in the double-stranded stem of the A10 aptamer results in a targeted QD-Apt(Dox) conjugate with reversible self-quenching properties based on a Bi-FRET mechanism. A donor-acceptor model fluorescence resonance energy transfer (FRET) between QD and Dox and a donor-quencher model FRET between Dox and aptamer result when Dox intercalated within the A10 aptamer. This simple multifunctional nanoparticle system can deliver Dox to the targeted prostate cancer cells and sense the delivery of Dox by activating the fluorescence of QD, which concurrently images the cancer cells. We demonstrate the specificity and sensitivity of this nanoparticle conjugate as a cancer imaging, therapy and sensing system in vitro.  相似文献   
9.
Quasi type‐II PbSe/PbS quantum dots (QDs) are employed in a solid state high efficiency QD/TiO2 heterojunction solar cell. The QDs are deposited using layer‐by‐layer deposition on a half‐micrometer‐thick anatase TiO2 nanosheet film with (001) exposed facets. Theoretical calculations show that the carriers in PbSe/PbS quasi type‐II QDs are delocalized over the entire core/shell structure, which results in better QD film conductivity compared to PbSe QDs. Moreover, PbS shell permits better stability and facile electron injection from the QDs to the TiO2 nanosheets. To complete the electrical circuit of the solar cell, a Au film is evaporated as a back contact on top of the QDs. This PbSe/PbS QD/TiO2 heterojunction solar cell produces a light to electric power conversion efficiency (η) of 4% with short circuit photocurrent (Jsc) of 17.3 mA/cm2. This report demonstrates highly efficient core/shell near infrared QDs in a QD/TiO2 heterojunction solar cell.  相似文献   
10.
Hybrid perovskite and all‐inorganic perovskite have attracted much attention in recent years owing to their successful use in the photovoltaic field. Usually the perovskite is used in its bulk form, although recently, perovskites' nanocrystalline form has received increased attention. Recent developments in the evolving research field of nanomaterial‐based perovskite are reviewed. Both hybrid organic‐inorganic and all‐inorganic perovskite nanostructures are discussed, as well as approaches to tune the optical properties by controlling the size and shape of perovskite nanostructures. In addition, chemical modifications can change the perovskite nanostructures' band‐gap, similar to their bulk counterpart. Several applications, including light‐emitting diodes, lasers, and detectors, demonstrate the latent potential of perovskite nanostructures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号