首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
工业技术   15篇
  2021年   1篇
  2014年   1篇
  2013年   4篇
  2012年   5篇
  2011年   1篇
  2010年   1篇
  2007年   1篇
  2003年   1篇
排序方式: 共有15条查询结果,搜索用时 390 毫秒
1.
2.
We report on the in vitro response of human gingival fibroblasts (HGF-1 cell line) to various thin films of titanium dioxide (TiO2) deposited on titanium (Ti) substrates by low pressure metal-organic chemical vapor deposition (LP-MOCVD). The aim was to study the influence of film structural parameters on the cell behavior comparatively with a native-oxide covered titanium specimen, this objective being topical and interesting for materials applications in implantology. HGF-1 cells were cultured on three LP-MOCVD prepared thin films of TiO2 differentiated by their thickness, roughness, transversal morphology, allotropic composition and wettability, and on a native-oxide covered Ti substrate. Besides traditional tests of cell viability and morphology, the biocompatibility of these materials was evaluated by fibronectin immunostaining, assessment of cell proliferation status and the zymographic evaluation of gelatinolytic activities specific to matrix metalloproteinases secreted by cells grown in contact with studied specimens. The analyzed surfaces proved to influence fibronectin fibril assembly, cell proliferation and capacity to degrade extracellular matrix without considerably affecting cell viability and morphology. The MOCVD of TiO2 proved effective in positively modifying titanium surface for medical applications. Surface properties playing a crucial role for cell behavior were the wettability and, secondarily, the roughness, HGF-1 cells preferring a moderately rough and wettable TiO2 coating.  相似文献   
3.
Due to its excellent bone-like mechanical properties and non-toxicity, magnesium (Mg) and its alloys have attracted great interest as biomaterials for orthopaedic applications. However, their fast degradation rate in physiological environments leads to an acute inflammatory response, restricting their use as biodegradable metallic implants. Endowing Mg-based biomaterials with immunomodulatory properties can help trigger a desired immune response capable of supporting a favorable healing process. In this study, electrospun poly(ε-caprolactone) (PCL) fibers loaded with coumarin (CM) and/or zinc oxide nanoparticles (ZnO) were used to coat the commercial AZ31 Mg alloy as single and combined formulas, and their effects on the macrophage inflammatory response and osteoclastogenic process were investigated by indirect contact studies. Likewise, the capacity of the analyzed samples to generate reactive oxygen species (ROS) has been investigated. The data obtained by attenuated total reflection Fourier-transform infrared (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS) analyses indicate that AZ31 alloy was perfectly coated with the PCL fibers loaded with CM and ZnO, which had an important influence on tuning the release of the active ingredient. Furthermore, in terms of degradation in phosphate-buffered saline (PBS) solution, the PCL-ZnO- and secondary PCL-CM-ZnO-coated samples exhibited the best corrosion behaviour. The in vitro results showed the PCL-CM-ZnO and, to a lower extent, PCL-ZnO coated sample exhibited the best behaviour in terms of inflammatory response and receptor activator of nuclear factor kappa-B ligand (RANKL)-mediated differentiation of RAW 264.7 macrophages into osteoclasts. Altogether, the results obtained suggest that the coating of Mg alloys with fibrous PCL containing CM and/or ZnO can constitute a feasible strategy for biomedical applications.  相似文献   
4.
In this study, a superelastic Ni-free Ti-based biomedical alloy was treated in surface by the implantation of nitrogen ions for the first time. The N-implanted surface was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and secondary ion mass spectroscopy, and the superficial mechanical properties were evaluated by nano-indentation and by ball-on-disk tribological tests. To investigate the biocompatibility, the corrosion resistance of the N-implanted Ti alloy was evaluated in simulated body fluids (SBF) complemented by in-vitro cytocompatibility tests on human fetal osteoblasts. After implantation, surface analysis methods revealed the formation of a titanium-based nitride on the substrate surface. Consequently, an increase in superficial hardness and a significant reduction of friction coefficient were observed compared to the non-implanted sample. Also, a better corrosion resistance and a significant decrease in ion release rates have been obtained. Cell culture experiments indicated that the cytocompatibility of the N-implanted Ti alloy was superior to that of the corresponding non-treated sample. Thus, this new functional N-implanted titanium-based superelastic alloy presents the optimized properties that are required for various medical devices: superelasticity, high superficial mechanical properties, high corrosion resistance and excellent cytocompatibility.  相似文献   
5.
Current clinical strategies for adipose tissue engineering (ATE), including autologous fat implants or the use of synthetic surrogates, not only are failing in the long term, but also can’t face the latest requirements regarding the aesthetic restoration of the resulted imperfections. In this context, modern strategies in current ATE applications are based on the implantation of 3D cell-scaffold bioconstructs, designed for prospective achievement of in situ functional de novo tissue. Thus, in this paper, we reported for the first time the evaluation of a spongious 60% collagen and 40% sericin scaffold preseeded with human adipose-derived stem cells (hADSCs) in terms of biocompatibility and adipogenic potential in vitro. We showed that the addition of the sticky protein sericin in the composition of a classical collagen sponge enhanced the adhesion and also the proliferation rate of the seeded cells, thus improving the biocompatibility of the novel scaffold. In addition, sericin stimulated PPARγ2 overexpression, triggering a subsequent upregulated expression profile of FAS, aP2 and perilipin adipogenic markers. These features, together with the already known sericin stimulatory potential on cellular collagen production, promote collagen-sericin biomatrix as a good candidate for soft tissue reconstruction and wound healing applications.  相似文献   
6.
The aims of the study were to investigate the electrochemical response of a new dental Au‐20Pd‐10Ag‐5Ti alloy in artificial Carter‐Brugirard saliva and to assess its biocompatibility using gingival fibroblast culture. Electrochemical techniques of potentiodynamic and linear polarization were used. Also, the open circuit potentials and the corresponding open circuit potential gradients were monitored for 5000 exposure hours. The gingival fibroblast response to Au‐20Pd‐10Ag‐5Ti alloy was estimated by LDH‐cytotoxicity, MTT cell proliferation assays, the assessment of substrate‐dependent changes in extracellular fibronectin network, cell morphology and actin cytoskeleton organization. The cyclic potentiodynamic curves of Au‐20Pd‐10Ag‐5Ti alloy exhibited a passive behaviour with transpassive dissolution of silver, without pitting corrosion. Open circuit potentials were finally stable at noble values. Open circuit potential gradients have low values that could not generate galvanic or local corrosion. The new Au‐20Pd‐10Ag‐5Ti alloy did not promote cell damage and alterations in cell adhesion and morphological features, exhibiting a good biocompatibility.  相似文献   
7.
Among metallic materials used as bone substitutes, β titanium alloys gain an increasing importance because of their low modulus, high corrosion resistance and good biocompatibility. In this work, an investigation of the in vitro cytocompatibility of a recently new developed β-type Ti–25Ta–25Nb alloy was carried out by evaluating the behavior of human osteoblasts. The metallic Ti–6Al–4V biomaterial, which is one of representative α + β type titanium alloys for biomedical applications, and Tissue Culture Polystyrene (TCPS), were also investigated as reference Ti-based material and control substrate, respectively. Both metallic surfaces were analyzed by X-ray diffraction, atomic force microscopy and X-ray photoelectron spectroscopy. The cellular response was quantified by assessments of viability, cell attachment and spreading, cell morphology, production and extracellular organization of fibronectin and cell proliferation. Polished surfaces from both materials having an equiaxed grain microstructure and nanometre scale surface roughness elicited an essentially identical osteoblast response in terms of all analyzed cellular parameters. Thus, on both surfaces the cells displayed high survival rates, good cell adhesion and spreading, a dense and randomly dispersed fibronectin matrix and increasing cell proliferation rates over the incubation time. Furhermore, the enhanced biological performance of Ti–25Ta–25Nb was highly supported by the results obtained in comparison with TCPS. These findings, together with previously shown superelastic behavior, low Young's modulus and high corrosion resistance, recommend Ti–25Ta–25Nb as good candidate for applications in bone implantology.  相似文献   
8.
9.
In this paper, the electrochemical behaviour of the titanium and Ti‐6Al‐7Nb alloy in artificial saliva (Tani&Zucchi and Carter–Brugirard), ion release tests and in vitro biocompatibility of human osteoblasts (HOB) were studied. Titanium and its implant Ti‐6Al‐7Nb alloy present self‐passivation and very stable passive films in Tani&Zucchi artificial saliva of pH = 2.5; 5; 6.7; 9; the total quantity of ions released in the artificial saliva and corrosion rates are very low, proving a very good corrosion resistance and very low toxicity. In undoped and doped Carter–Brugirard saliva, the open circuit potentials have highly electropositive values, denoting passive state and good stability; the open circuit potential gradients, simulating the non‐uniformity of the saliva composition, show very low values, no danger for the implant integrity. The in vitro cytotoxicity of Ti‐6Al‐7Nb alloy was evaluated on the basis of cell morphology and cell viability. The results obtained revealed a high biocompatibility between HOB and Ti‐6Al‐7Nb alloy.  相似文献   
10.
In this work, we investigate for the first time several issues involved in bio-adhesion process for a new type of chemically modified titanium surfaces (in their initial form and after collagen deposition), in order to assess their potential in dental implant surface modification. For this purpose, we studied the following: collagen adhesion, cytotoxicity, osteoblast cytomorphology, cell adhesion and proliferation, doxycycline embedding and modifications in the collagen film deposed on the metal surfaces, drug release from the collagen films. The improvement of adhesion between collagen film and titanium substrate, when hydroxyl and amino functional groups are assisting the surfaces was presented, all materials showing no cytotoxic effects as revealed by lactate dehydrogenase-based assay. The drug release from titanium–coll–doxy systems offers a dual mechanism of the delivery profile (burst release followed by moderate discharge of the antibiotic), with perspectives in soft tissue recovery postoperative stage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号