首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   9篇
工业技术   137篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   4篇
  2017年   6篇
  2016年   3篇
  2015年   2篇
  2014年   7篇
  2013年   13篇
  2012年   8篇
  2011年   9篇
  2010年   8篇
  2009年   9篇
  2008年   7篇
  2007年   8篇
  2006年   3篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   4篇
  1997年   5篇
  1996年   2篇
  1995年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1982年   1篇
  1980年   2篇
  1974年   1篇
  1972年   1篇
  1970年   1篇
  1954年   1篇
排序方式: 共有137条查询结果,搜索用时 187 毫秒
1.
Oxidation kinetics of copper in the temperature range of 973–1173 K atP O 2=21.27 kPa exhibit enhancement and deceleration in the rates with changing polarity compared to normal oxidation under interrupted mode of directcurrent application. These conditions are achieved by connecting the oxidizing copper covered with an initially formed thin oxide film to the positive and negative terminal of a dc source, respectively. However, the influence of direction of the current is found to be opposite under uninterrupted mode of impressed current flow in the same temperature range. The effect of short-circuiting the metal to the outer oxide/air interface on the reaction kinetics is also reported. The rate of oxide-scale growth under normal condition, and two different modes of current applications as well as with shorting circuitry attachment conform to the parabolic growth law. The results pertaining to the two different modes of impressed current have been discussed considering both the phenomena of electrolysis of the oxide electrolyte and the polarization at the two phase boundaries. The enhancement and the reduction in rates under uninterrupted impressed current conditions are explained on the basis of increased and decreased average defect concentrations, respectively, within the oxide layer. The acceleration and deceleration in the rates under interrupted mode of current flow have been explained in the light of sustenance of a steeper and flatter electrochemical-potential gradient of defects, respectively, across the growing-oxide layer. The possible different responses of the metal/oxide and oxide/air interfaces to the impressed current brought into play by two different modes of current application, have enabled to display a better insight on the mechanistic aspects of scale growth under the influence of an externally applied current.  相似文献   
2.
Improved thin‐film microbatteries are needed to provide appropriate energy‐storage options to power the multitude of devices that will bring the proposed “Internet of Things” network to fruition (e.g., active radio‐frequency identification tags and microcontrollers for wearable and implantable devices). Although impressive efforts have been made to improve the energy density of 3D microbatteries, they have all used low energy‐density lithium‐ion chemistries, which present a fundamental barrier to miniaturization. In addition, they require complicated microfabrication processes that hinder cost‐competitiveness. Here, inkjet‐printed lithium–sulfur (Li–S) cathodes for integrated nanomanufacturing are reported. Single‐wall carbon nanotubes infused with electronically conductive straight‐chain sulfur (S@SWNT) are adopted as an integrated current‐collector/active‐material composite, and inkjet printing as a top‐down approach to achieve thin‐film shape control over printed electrode dimensions is used. The novel Li–S cathodes may be directly printed on traditional microelectronic semicoductor substrates (e.g., SiO2) or on flexible aluminum foil. Profilometry indicates that these microelectrodes are less than 10 µm thick, while cyclic voltammetry analyses show that the S@SWNT possesses pseudocapacitive characteristics and corroborates a previous study suggesting the S@SWNT discharge via a purely solid‐state mechanism. The printed electrodes produce ≈800 mAh g?1 S initially and ≈700 mAh g?1 after 100 charge/discharge cycles at C/2 rate.  相似文献   
3.
A shared vocabulary between humans and robots for describing spatial concepts is essential for effective human robot interaction. Towards this goal, we present a novel technique for place categorization from visual cues called PLISS (Place Labeling through Image Sequence Segmentation). PLISS is different from existing place categorization systems in two major ways—it inherently works on video and image streams rather than single images, and it can detect “unknown” place labels, i.e. place categories that it does not know about. PLISS uses changepoint detection to temporally segment image sequences which are subsequently labeled. Changepoint detection and labeling are performed inside a systematic probabilistic framework. Unknown place labels are detected by using a probabilistic classifier and keeping track of its label uncertainty. We present experiments and comparisons on the large and extensive VPC dataset. We also demonstrate results using models learned from images downloaded from Google’s image search.  相似文献   
4.
A mathematical model has been developed to study the impact of nozzle-catalyst distance and bulk gas temperature on the conversion and hydrogen evolution rate in a spray pulse reactor. The effects of reactor configuration and operating parameters on conversion and evolution rate were predicted with more than 90% accuracy. Reactor optimization and sensitivity analysis were carried out and an optimal design of nozzle-catalyst distance 5 cm and bulk gas temperature of 50 °C were proposed. The optimized design was predicted to increase the conversion from approximately 32–74%. The model could be in general used for designing any endothermic heterogeneous catalytic reaction in a spray pulse reactor.  相似文献   
5.
We have synthesized and characterized donor–π–spacer–acceptor type molecules in which 1,3,4-oxadiazoles are π-spacers, triphenylamines are the donors and cyanoacetic acid are the acceptors for use as sensitizers in dye-sensitized solar cells (DSSCs). Detailed absorption, emission, electrochemical, photoelectrochemical and computational studies have been carried out on five novel derivatives. The dyes have an absorption range of 377–388 nm, and an emission in the range of 494–540 nm. There is a large charge transfer from the donor side to the acceptor side on excitation. The propeller shape of the triphenylamine and the bulky substituents on it help in reducing the dye-aggregation on TiO2 surface. The dyes exhibited good overall conversion efficiency (2.79–3.21%). Plane wave calculations indicate that the dye has a reasonably strong binding to the TiO2 surface and the generated DOS picture shows an overlap of the molecular orbitals of the dye and the TiO2 bands. We conclude that the dyes have a promising role as sensitizers in DSSC.  相似文献   
6.
Fabrication of photonic crystal lasers by nanomolding of solgel glasses   总被引:2,自引:0,他引:2  
We demonstrate the formation, in a single process step, of periodic arrays of features of surface relief with submicrometer lateral dimensions in hybrid organic and inorganic solgel glasses by using elastomeric molding techniques. Lasers formed with molded photonic crystal resonators that consist of triangular, square, and honeycomb lattices of cylindrical posts and holes show emission spectra and lasing thresholds that are similar to devices formed by conventional high-resolution photolithographic patterning of thick layers of thermally grown oxide.  相似文献   
7.
Introduction Among conventional hemodialysis (CHD) patients, carbamylated serum albumin (C‐Alb) correlates with urea and amino acid deficiencies and is associated with mortality. We postulated that reduction of C‐Alb by intensive HD may correlate with improvements in protein metabolism and cardiac function. Methods One‐year observational study of in‐center nocturnal extended hemodialysis (EHD) patients and CHD control subjects. Thirty‐three patients receiving 4‐hour CHD who converted to 8‐hour EHD were enrolled, along with 20 controls on CHD. Serum C‐Alb, biochemistries, and cardiac MRI parameters were measured before and after 12 months of EHD. Findings EHD was associated with reduction of C‐Alb (average EHD change ?3.20 mmol/mol [95% CI ?4.23, ?2.17] compared to +0.21 [95% CI ?1.11, 1.54] change in CHD controls, P < 0.001). EHD was also associated with increases in average essential amino acids (in standardized units) compared to CHD (+0.38 [0.08, 0.68 95%CI]) vs. ?0.12 [?0.50, 0.27, 95% CI], P = 0.047). Subjects who reduced C‐Alb more than 25% were found to have reduced left ventricular mass, increased urea reduction ratio, and increased serum albumin compared to nonresponders, and % change in C‐Alb significantly correlated with % change in left ventricular mass. Discussion EHD was associated with reduction of C‐Alb as compared to CHD, and reduction of C‐Alb by EHD correlates with reduction of urea. Additional studies are needed to test whether reduction of C‐Alb by EHD also correlates with improved clinical outcomes.  相似文献   
8.
The purpose of this study is to develop and implement a power quality monitoring system that will enable power quality engineers to conduct diagnostic testing in the field. The study is limited to the implementation of hardware and software required to process the analog signals received. A real-time monitoring system that can be used to perform automated power quality testing is described. The system is centered on a digital signal processor (DSP) interfaced to a personal computer (PC). The test signal is input to the system through the A/D board. The signal is analyzed in real-time in the DSP, and the results are transferred to the PC through the communication interface. The PC presents the results and interacts with the user. This system can be used to perform onsite power quality studies  相似文献   
9.
In this study, we describe the correlations between the photoluminescence (PL) spectra and electrical properties of pseudomorphic modulation-doped AlGaAs/InGaAs/GaAs quantum wells (MDQWs) grown by molecular beam epitaxy. In MDQWs, the presence of a large sheet carrier density contributes significantly to the PL linewidth. At low temperatures (4.2 K), free carrier induced broadening of the PL linewidth is influenced by the material quality of the structure. At higher temperatures (77 K), differences in the material quality do not affect the linewidth significantly, and under these conditions the PL linewidth is a good measure of the sheet carrier density. The ratio of the 77 K to 4.2 K PL linewidths provides useful information about the crystalline quality of the MDQW structures as illustrated by the correlation with 77 K Hall mobility data and a simple model. We present results of Electron Beam Electroreflectance (EBER) to characterize MDQWs and undoped quantum wells in the AlGaAs/InGaAs/GaAs material system. Several transitions have been observed and fitted to excitonic Lorentzian lineshapes, providing accurate estimates of transition energy and broadening parameter at temperatures of 96 K and 300 K.  相似文献   
10.
In this study, we describe the effects of rapid thermal annealing on the electrical and optical properties of modulation-doped quantum wells (MDQWs). The sheet carrier concentration in MDQW structures which have been annealed in contact with a piece of GaAs tends to decrease with increasing annealing time due to Si auto-compensation in the doped AlGaAs regions. The high energy cut-off point of 4.2 K PL spectra, which occurs at the Fermi energy, and the 77 K PL linewidth are accurate measures of sheet carrier density. These two parameters track variations in carrier density produced by annealing. Photoluminescence spectra also provide additional insight into annealing-induced changes such as Si migration, which causes a degradation in the mobility of the two-dimensional electron gas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号