首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
  国内免费   2篇
工业技术   7篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2010年   1篇
  2008年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
氢电混合燃料电池汽车动力系统技术   总被引:1,自引:0,他引:1  
"电动汽车"是以蓄电池、燃料电池和超级电容器等电化学能源储存与转换装置为动力系统的交通运输工具通称,是新能源汽车发展的重要方向,其中,燃料电池汽车被认为是电动汽车的最终选择[1]。然而,燃料电池汽车经过多年示范运行,其产业化日程始终不明朗,而先进  相似文献   
2.
以H2PtCl6·6H2O和H2IrCl6·6H2O为前驱体,通过化学还原共沉积方法制备了Pt和Ir不同摩尔比的Pt-Ir/C催化剂,同时在Pt-Ru/C催化剂中添加一定量的Ir,得到Pt-Ru-Ir/C催化剂.对样品进行了TEM,XRD和XPS表征并在甲醇、乙醇硫酸溶液中进行了电化学性能(CV、CA)测试.结果表明,在Pt基催化剂中添加合适的Ir后,甲醇、乙醇的电催化氧化性能均明显提高,其中Pt、Ru和Ir的摩尔比为4:4:1的Pt-Ru-Ir/C催化剂对于直接醇类具有最佳的电催化氧化性能.  相似文献   
3.
吴曦  章冬云  蒋淇忠  马紫峰 《化工学报》2010,61(10):2694-2702
在建立直通道质子交换膜燃料电池(PEMFC)的二维全电池数学模型中,将球形团聚物模型应用至两极的催化剂层。通过调节团聚物中质子传导介质的比例和催化层孔隙率,预测了基准供气状态下单电池的极化曲线,与文献报道的实验数据吻合良好。研究了电池运行过程中,膜电极内各化学组分和电流密度的分布情况及流向,比较了不同供气压力、催化剂铂颗粒尺寸等参数对电池性能的影响。计算结果表明,在阴极及时排出反应产生的水,并在阳极对燃料气进行加湿是保证单电池正常运行的前提,提高阴极的氧化剂气体压力,可显著改善PEMFC单电池性能,特别是在受浓差极化影响较大的大电流密度区;在催化剂铂载量相同的情况下,减小铂颗粒的尺寸可以提高电池的性能。  相似文献   
4.
研究了动力电池用5V纳米正极材料磷酸钴锂(LiCoPO4)的喷雾裂解合成技术及其电化学性能.研究中使用喷雾干燥法获得前驱体,通过高温裂解等一系列手段获得LiCoPO4纳米正极材料,使用X射线衍射仪(XRD)、扫描电子显微镜(SEM)等分析手段对LiCoPO4样品进行分析表征和性能测试.结果发现,裂解温度是影响LiCoPO4合成的主要因素,650℃以上温度煅烧获得纯相LiCoPO4.纯相LiCoPO4的电化学性能不甚理想,而掺杂Fe元素部分取代Co能够提高LiCoPO4的初始容量和循环性能,使得该材料具有很好的应用前景.  相似文献   
5.
使用还原铁粉作为铁源, 通过超细球磨与喷雾干燥、高温煅烧技术制备了球形微纳米LiFePO4/C复合材料。使用DSC/TG以及XRD对LiFePO4/C复合材料的形成过程进行了分析; 使用SEM、穆斯堡谱仪等手段对复合材料进行分析; 使用电化学工作站、容量测试仪对其充放电行为进行分析。研究发现, 使用该合成技术路线, 在500~700℃下能够合成LiFePO4/C复合材料。获得的LiFePO4/C复合材料具有规则的球形外貌, 平均尺寸4~5 μm。该微米颗粒由200 nm左右细小颗粒组成, 颗粒间具有纳米尺寸微孔。穆斯堡谱仪测试结果表明, 复合材料中Fe处于+2价的价态。复合材料在1C倍率下表现出稳定的充放电行为, 平均比容量在156 mAh/g, 300次循环后, 容量保持率为92.8%。该技术制备的LiFePO4/C复合材料具有潜在的应用价值。  相似文献   
6.
乙醇电催化氧化反应动力学分析与研究进展   总被引:5,自引:0,他引:5  
乙醇是一种很有吸引力的燃料电池电动汽车燃料。乙醇电催化氧化反应动力学研究对于直接醇类燃料电池和间接醇类燃料电池的阳极电催化剂开发有重要作用。本文依据反应机理和阳极电催化剂活性对乙醇的电催化氧化反应动力学进行了讨论,介绍了先进的微分电化学质谱技术在乙醇电催化反应动力学研究中的应用。  相似文献   
7.
本文研究出一种利用硫模板制备多孔石墨纳米笼的方法, 其核心为利用空气氧化将石墨层中掺杂的硫除去并在原位产生纳米孔洞。硫的掺杂是在碳包裹铁纳米核壳颗粒制备中同时进行的, 随后将其中铁基内核除去即得硫掺杂的石墨纳米笼。将其中的硫除去后, 石墨纳米笼的比表面积(由540 m2/g提高至850 m2/g)和介孔孔容(由0.44 cm3/g提高至0.9 cm3/g)均有显著提高。与传统制备多孔石墨纳米材料的方法相比, 本方法在显著提高材料比表面积的同时未对纳米笼的石墨化结构有明显破坏。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号