首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
工业技术   1篇
  2022年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
当技术节点降低至32 nm及以下时,为了缓解电阻-电容(RC)延迟导致的铜(Cu)互连器件可靠性差的问题,急需寻找新的阻挡层材料.与钽(Ta)相比,钴(Co)具有更低的电阻率、更小的硬度、与Cu更好的粘附性、在高纵横比沟槽中能实现保形沉积等优点.因此,Co成为取代Ta的有前途的衬里材料而被堆叠在氮化钽(TaN)阻挡层上.Co的引入可以降低阻挡层厚度和简化工艺过程.然而,当技术节点降低至10 nm及以下时,金属线宽度接近甚至小于Cu的电子平均自由程.由于侧壁和晶界处电子散射的增加,Cu的电阻率开始急剧增加.与Cu相比,Co的电子平均自由程更低且可以在阻挡层更薄的情况下工作.因此,Co成为替代中段制程(MOL)中接触金属W和后段制程(BEOL)中互连金属Cu的绝佳候选材料.Co的引入势必需要与化学机械抛光(CMP)以及CMP后清洗等相兼容的工艺.然而,与多层Cu互连Co基阻挡层CMP以及Co互连CMP相兼容的抛光液作为商业机密一直未被公开.同时,学术界对Co的CMP也缺乏系统而全面的研究.本文就Co作为Cu互连阻挡层和互连金属的有效性及可行性进行了系统论述,重点综述了Co基阻挡层和Co互连CMP的研究现状,讨论了不同化学添加剂对材料去除速率、腐蚀防护、电偶腐蚀和去除速率选择性的影响.同时,本文对Co CMP所面临的问题与挑战进行了总结,以期为Co基阻挡层以及Co互连CMP浆料的开发提供有价值的参考.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号