首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   2篇
工业技术   33篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2017年   4篇
  2014年   2篇
  2013年   5篇
  2012年   1篇
  2011年   2篇
  2009年   3篇
  2008年   4篇
  2003年   1篇
  2002年   2篇
  1994年   1篇
  1993年   1篇
  1977年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
1.
In the present study nanocrystalline pristine and Pd-doped SnO2 (Pd:SnO2) with various mol% Pd have been synthesized by a modified Pechini citrate route. Transmission electron microscopy and X-ray powder diffraction studies were used to characterize the morphology, crystallinity, and structure of the SnO2 and Pd:SnO2. The response of the pristine SnO2 and Pd:SnO2 was studied towards different reducing gases. The 1.5 mol% Pd doping showed an enhanced response of 75 and 95% towards LPG at as low as 50 and 100 °C, respectively, which were quite large high value as compared with pristine SnO2 (38 and 35% at 50 and 100 °C, respectively). Structural characterization revealed that Pd doping reduced the crystallite size of SnO2 and helps in the formation of distinct spherical nanospheres at a calcinations temperature of 500 °C. Thus the increase in LPG response can be correlated with the spherical morphology, a decrease in the crystallite size (11 nm) due to doping with Pd as compared with the pristine SnO2 (26 nm) and main role of Pd as a catalyst.  相似文献   
2.
3.
Biomass is renewable source of energy while the reserves of petroleum arc being depleted. The latex of a potential petrocrop, Colotropis procera, a lalicifcr, arid-plant which is rich in hydrocarbon type triterpene compounds etc. was found lo be a better feed slock for thermal hydrocracking as compared to whole plant biomass inlcrms of liquid product yield. Studies of chemical reaction dynamics of the thermal cracking of latex at 200-400°C showed that the process should be termed as hydrogen-tranfer (H-T) hydrocracking of latex under ambient pressure conditions. The hydrogen rich cracked trilcrpenoids act as the H-donors in this process, where nascent hydrogen atoms and free radicals chemically plug the cracked moities to stabilise these. Latex was also coagulated and the H-T hydrocracking of the feedstock coagulum gave a higher yield of cracked oil in comparision lo that from the dried latex. A model triterpene compound, ursolic acid has been subjected to H-T hydrocracking to understand the process of hydrocracking of latex under similar conditions and it was found that triterpencs on H-T hydrocracking produced only liquid and gaseous products and no solid char. The temperature for hydrocracking of latex has been optimized to 350°C and molecular sieve was round to catalyse the H-T Hytrocraking process to yield more liquid product The distillation range of cracked latex on(CLO)Obtained from H.T Hytrocracking of C procera Latex indicated that it can be used as fuel. Moreover CLO resembled diesel fuels and was predominantly paraffinic in nature as characterised by NMR and FTIR spectral analysis. A process has been recommended for gelling value added fuels and chemicals from C. procera latex.  相似文献   
4.
Colloidal drug delivery systems have been extensively investigated as drug carriers for the application of different drugs via different routes of administration. Systems, such as solid lipid nanoparticles, polymeric nanoparticles and liposomes, have been investigated for a long time for the treatment of various lung diseases. The pulmonary route, owing to a noninvasive method of drug administration, for both local and systemic delivery of an active pharmaceutical ingredient (API) forms an ideal environment for APIs acting on pulmonary diseases and disorders. Additionally, this route offers many advantages, such as a high surface area with rapid absorption due to high vascularization and circumvention of the first pass effect. Aerosolization or inhalation of colloidal systems is currently being extensively studied and has huge potential for targeted drug delivery in the treatment of various diseases. Furthermore, the surfactant-associated proteins present at the interface enhance the effect of these formulations by decreasing the surface tension and allowing the maximum effect. The most challenging part of developing a colloidal system for nebulization is to maintain the critical physicochemical parameters for successful inhalation. The following review focuses on the current status of different colloidal systems available for the treatment of various lung disorders along with their characterization. Additionally, different in vitro, ex vivo and in vivo cell models developed for the testing of these systems with studies involving cell culture analysis are also discussed.  相似文献   
5.
Mukta  Gupta  Neeraj 《Wireless Networks》2020,26(4):2957-2982
Wireless Networks - Since 1999 IEEE 802.11 has become a dominating wireless technology for providing WLAN in both public and private places. The protocol has evolved with time and the current...  相似文献   
6.
Objective: The aim of the present study was to prepare the amino acid prodrugs of bromhexine hydrochloride to improve its solubility. Methods: All the prodrugs were synthesized by first reacting bromhexine with tert-butoxycarbonyl (Boc) protected amino acid and then deprotection was carried out by using trifluoroacetic acid. These prodrugs were characterized by their melting points, NMR, mass and FTIR spectroscopy. Solubility and partition coefficient of bromhexine and various prodrugs were determined. The solution stability of various prodrugs was also determined in various buffers of pH ranging from 2 to 10. Degradation rate constants and half-life were also determined at various pH. Results and discussion: The structures of all the synthesized prodrugs were confirmed by NMR, mass and FTIR spectra. The prodrug 2-N-l-alanyl-bromhexine hydrochloride showed maximum solubility and minimum partition coefficient value. These prodrugs may hydrolyze by one or more mechanisms. The order of decreasing rates of hydrolysis was 2-N-l-prolyl-bromhexine hydrochloride > 2-N-glycyl-bromhexine hydrochloride > 2-N-l-alanyl-bromhexine hydrochloride. All the prodrugs exhibited maximum stability in the acidic pH range and undergo base catalyzed hydrolysis. Conclusion: Solubility studies and partition coefficient values indicated that the synthesized prodrug, 2-N-l-alanyl-bromhexine hydrochloride, was least lipophilic as compared to other synthesized prodrugs. Solution stability studies showed that this prodrug undergo minimum hydrolysis at 37°C. So, it is concluded that 2-N-l-alanyl-bromhexine hydrochloride exhibits better solubility and stability as compared to other synthesized prodrugs.  相似文献   
7.
ABSTRACT

Photothermal degradation of the latex obtained from Calotropis procera showed enhanced extraction in heptane up to 50%. Treatment of the latex with different concentrations of NaOH resulted in the reduction in heptane extraction of the latex. Treatment of latex with aqueous HC1 coagulated it and thus resulted in an increase in extraction yield. The 1HNMR, l3CNMR and FTTR spectral analyses of treated latex showed an increase in the olefinic and carbonyl groups in the latex. Thus, this showed that photothermal treatments rendered the latex more amenable to hydrocracking for obtaining value added chemicals and fuels from the latex.  相似文献   
8.
Multimedia Tools and Applications - Multiple-choice questions (MCQs) are used as instrumental tool for assessment, not only in various competitive examinations but also in contemporary information...  相似文献   
9.
Some manganese(II) complexes derived from different sulphadrugs and heterocyclic ketones have been prepared. These complexes have been characterized on the basis of elemental analyses, molecular weight determinations, conductivity measurements, infrared, ESR and magnetic measurements. The spectral data suggest that the ligands act in a monobasic, bidentate manner coordinating through nitrogen atom. A high spin tetrahedral geometry around this metal has been proposed on the basis of magnetic and spectral studies. The isolated products are coloured solids, soluble in DMSO, DMF and MeOH. All the complexes are monomeric in nature as indicated by their molecular weight determinations and conductivity measurements in dry DMF show them to be non-electrolytes. All the ligands and their corresponding complexes have been screened for their fungicidal, bactericidal and nematicidal activities.  相似文献   
10.
There is an increased need for low cost actuation technologies at the micro and nanoscale. Magnetically responsive polymer-based materials are good candidates for numerous applications in microsystems for actuation and sensing purposes. In this work, we report on nano-polymer composite magnetic silicone-based membranes, which provide the low elastic modulus needed for magnetic actuation to be effective at small scales. Passivated crystalline cobalt (~37 nm) and water based iron/cobalt (~100 nm) nanoparticles (NPs) have been synthesized using a chemical route at 50 °C and at room temperature, respectively. The NPs were characterized by Fourier Transform Infrared Spectroscopy, X-Ray Diffraction, Atomic Force Microscopy and Vibrating Sample Magnetometry (VSM). The NPs are then uniformly dispersed in a polydimethyl siloxane (PDMS) polymer matrix in order to fabricate smooth and flexible magnetic composite membranes. The magnetic properties of the membranes for different amounts of cobalt and iron NPs (16 and 25 wt%) were characterized by VSM and deflection measurements. Co/Fe PDMS composite membranes of about 50 mm diameter and ~250 μm thickness were used under the application of ~400 Oe magnetic fields. The cobalt-PDMS membrane shows the largest deflection (~900 vs. ~80 μm for an iron-PDMS membrane). The deflections observed on these membranes are found to have a linear dependence on the applied magnetic field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号