首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93059篇
  免费   1751篇
  国内免费   428篇
工业技术   95238篇
  2023年   112篇
  2022年   127篇
  2021年   448篇
  2020年   324篇
  2019年   352篇
  2018年   14772篇
  2017年   13719篇
  2016年   10363篇
  2015年   927篇
  2014年   675篇
  2013年   983篇
  2012年   3789篇
  2011年   10162篇
  2010年   8782篇
  2009年   6101篇
  2008年   7267篇
  2007年   8157篇
  2006年   462篇
  2005年   1459篇
  2004年   1335篇
  2003年   1368篇
  2002年   718篇
  2001年   223篇
  2000年   301篇
  1999年   164篇
  1998年   353篇
  1997年   252篇
  1996年   186篇
  1995年   113篇
  1994年   90篇
  1993年   71篇
  1992年   48篇
  1991年   59篇
  1990年   32篇
  1989年   31篇
  1988年   33篇
  1984年   29篇
  1983年   30篇
  1968年   43篇
  1967年   34篇
  1966年   42篇
  1965年   44篇
  1963年   31篇
  1960年   31篇
  1959年   35篇
  1958年   37篇
  1957年   36篇
  1956年   34篇
  1955年   63篇
  1954年   68篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
1.
Walnut flour (WF), a by-product of walnut oil production, is characterised by high polyunsaturated fatty acids, proteins, and fibre contents and presents suitability for bakery products. However, when using non-traditional ingredients, it is essential to evaluate the effect on the quality properties of the final product. So, this work aimed to assess the impact of WF on the technological, physicochemical, and sensory properties of gluten-free (GF) cakes. WF was added at a flour blend (cassava (CS) and maize (MS) starches and rice flour) at 0, 10%, 15%, and 20%. The results showed that WF modified starch gelatinisation, increased amylose–lipid complex (ALC) content, and made crumbs easier to chew. Besides, the total dietary fibre (TDF) and protein content significantly increased. Cakes with 15% WF presented the highest specific volume (SV) and no differences in overall acceptability with respect to control. Hence, WF is a suitable ingredient for gluten-free bakery products.  相似文献   
2.
3.
Calcium hexaluminate (CA6) is an intrinsically densification-resistant material, therefore, its porous structures are key materials for applications as high-temperature thermal insulators. This article reports on the combination of calcined alumina and calcium aluminate cement (CAC) in castable aqueous suspensions for the in situ production of porous CA6. The CAC content (10–34 vol%) and the curing conditions ensure structural integrity prior to sintering and maximize the development of hydrated phases. Changes in physical properties, crystalline phases, and microstructure were investigated after isothermal treatments (120–1500 °C), and three sequential porogenic events were observed. The hydration of CAC preserved the water-derived pores (up to 120 °C), and the dehydroxylation of CAC hydrates (250–700 °C) generated inter-particles pores. Moreover, the in situ expansive formation of CA2 and CA6 (900–1500 °C) hindered densification and generated intra-particle pores. Such events differed from those observed with other CaO sources, and resulted in significantly higher pores content and lower thermal conductivity.  相似文献   
4.
The esophagus is a tubular-shaped muscular organ where swallowed fluids and muscular contractions constitute a highly dynamic environment. The turbulent, coordinated processes that occur through the oropharyngeal conduit can often compromise targeted administration of therapeutic drugs to a lesion, significantly reducing therapeutic efficacy. Here, magnetically guidable drug vehicles capable of strongly adhering to target sites using a bioengineered mussel adhesive protein (MAP) to achieve localized delivery of therapeutic drugs against the hydrodynamic physiological conditions are proposed. A suite of highly uniform microparticles embedded with iron oxide (IO) nanoparticles (MAP@IO MPs) is microfluidically fabricated using the genipin-mediated covalent cross-linking of bioengineered MAP. The MAP@IO MPs are successfully targeted to a specific region and prolongedly retained in the tubular-structured passageway. In particular, orally administered MAP@IO MPs are effectively captured in the esophagus in vivo in a magnetically guidable manner. Moreover, doxorubicin (DOX)-loaded MAP@IO MPs exhibit a sustainable DOX release profile, effective anticancer therapeutic activity, and excellent biocompatibility. Thus, the magnetically guidable locomotion and robust underwater adhesive properties of the proteinaceous soft microbots can provide an intelligent modular approach for targeted locoregional therapeutics delivery to a specific lesion site in dynamic fluid-associated tubular organs such as the esophagus.  相似文献   
5.
This work aimed to examine the performance of the hybrid sintering of clay ceramic in a microwave furnace, compared to the sintering process in a conventional furnace. The raw materials were subjected to X-ray fluorescence, loss on ignition (LOI), X-ray diffraction, particle size distribution, real specific mass, and thermogravimetric analyses. The red clay ceramic mass was prepared, extruded, pre-sintered in a conventional furnace at 600°C/60 min, and sintered at temperatures between 700 °C and 1100 °C. The sintering conventional (resistive oven) was carried out for 60 min with a heating rate of 10°C/min. In the microwave furnace, the sintering times were 5, 10, and 15 min, with a heating rate of 50°C/min, with a sintering chamber coated with silicon carbide (susceptor). The sintered specimens were characterized according to linear shrinkage, water absorption, apparent porosity, apparent specific mass, X-ray diffraction, Raman spectroscopy analysis, spectroscopy analysis in the ultraviolet and visible regions, microhardness, and scanning electron microscopy. The results showed that microwave sintering promoted an increase in the microhardness and apparent specific mass, and reduction in water absorption and apparent porosity values, due to greater densification in the microstructure. The best results occurred for specimens sintered at 1100°C.  相似文献   
6.
Graphene-based materials have attracted significant attention in many technological fields, but scaling up graphene-based technologies still faces substantial challenges. High-throughput top-down methods generally require hazardous, toxic, and high-boiling-point solvents. Here, an efficient and inexpensive strategy is proposed to produce graphene dispersions by liquid-phase exfoliation (LPE) through a combination of shear-mixing (SM) and tip sonication (TS) techniques, yielding highly concentrated graphene inks compatible with spray coating. The quality of graphene flakes (e.g., lateral size and thickness) and their concentration in the dispersions are compared using different spectroscopic and microscopy techniques. Several approaches (individual SM and TS, and their combination) are tested in three solvents (N-methyl-2-pyrrolidone, dimethylformamide, and cyrene). Interestingly, the combination of SM and TS in cyrene yields high-quality graphene dispersions, overcoming the environmental issues linked to the other two solvents. Starting from the cyrene dispersion, a graphene-based ink is prepared to spray-coat flexible electrodes and assemble a touch screen prototype. The electrodes feature a low sheet resistance (290 Ω □−1) and high optical transmittance (78%), which provide the prototype with a high signal-to-noise ratio (14 dB) and multi-touch functionality (up to four simultaneous touches). These results illustrate a potential pathway toward the integration of LPE-graphene in commercial flexible electronics.  相似文献   
7.
Among a variety of solar cell types, thin-film solar cells have been rigorously investigated as cost-effective and efficient solar cells. In many cases, flexible solar cells are also fabricated as thin films and undergo frequent stress due to the rolling and bending modes of applications. These frequent motions result in crack initiation and propagation (including delamination) in the thin-film solar cells, which cause degradation in efficiency. Reliability evaluation of solar cells is essential for developing a new type of solar cell. In this paper, we investigated the effect of layer delamination and grain boundary crack on 3D thin-film solar cells. We used finite element method simulation for modeling of both electrical performance and cracked structure of 3D solar cells. Through simulations, we quantitatively calculated the effect of delamination length on 3D copper indium gallium diselenide (CIGS) solar cell performance. Moreover, it was confirmed that the grain boundary of CIGS could improve the solar cell performance and that grain boundary cracks could decrease cell performance by altering the open circuit voltage. In this paper, the investigated material is a CIGS solar cell, but our method can be applied to general polycrystalline solar cells.  相似文献   
8.
Benchmarking is a tool available to furnace operators to evaluate their tap-hole life-cycle management practices against those of their peers. It allows furnace operators to challenge their own practices in order to increase furnace utilization. To facilitate the benchmarking process, it is necessary to define the variables to be considered and how they relate to one another. This article develops, from the literature and industry interviews, a holistic conceptualization of the variables that form part of tap-hole lifecycle management and performance. Specifically, the article focuses on the variables related to coke-bed-based processes (FeCr, SiMn, and HCFeMn) applying SAF technology of circular design.  相似文献   
9.
Antimony and bismuth recovery from copper electrorefining electrolyte could reduce the impacts of these problem elements and produce a new primary source for them. Two proprietary phosphonic acid ester extractants were examined (REX-1 and REX-2) for the removal of antimony and bismuth from copper electrorefining electrolytes. Experimentation included shakeout and break tests to determine the basic parameters for the extractants in terms of maximum loading, break times, and extraction and stripping efficiency. Five permutations of extractant mixtures (100 wt.% REX-1 and 25 wt.%, 50 wt.%, 75 wt.% and 100 wt.% REX-2) were studied. It was determined that REX-2 was able to extract Sb and Bi from the electrolyte, but required some mixture with REX-1 to better facilitate stripping with 400 g/L sulfuric acid. The laboratory electrorefining electrolyte containing glue had faster disengagement times than a synthetic solution without glue.  相似文献   
10.
Thermal barrier coatings (TBCs) are used to protect the hot sections of gas turbine engines and airplane engines. A TBC system comprises a substrate, bond coat, and TBC topcoat. The development of an accurate method for determining the Young’s modulus and Poisson’s ratio of TBC using a multilayered specimen is of importance. In this study, we applied the bending theory of a laminated plate to a three-layered material and proposed models to determine the Young’s modulus and Poisson’s ratio of the TBC layer using the bending strain of the TBC system specimen. Three methods were developed by utilizing (i) the coating biaxial strain, (ii) substrate biaxial strain, or (iii) coating and substrate biaxial strains. Subsequently, we determined appropriate dimensions of the specimen and span by using three-dimensional finite element analysis, and numerically verified the usefulness of the three proposed methods. However, the Young’s modulus and Poisson’s ratio determined using the multilayered specimen with a substrate are sensitive to experimental errors. Therefore, we evaluated the sensitivity of the three proposed methods to experimental error, and we determined the most insensitive method among them. Finally, we experimentally demonstrated the usefulness of this method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号