首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
工业技术   5篇
  2022年   1篇
  2021年   1篇
  2016年   1篇
  2013年   1篇
  2011年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
In this study the electrical conductivity of aluminum oxide (Al2O3), silicon dioxide (SiO2) and zinc oxide (ZnO) nanoparticles dispersed in propylene glycol and water mixture were measured in the temperature range of 0 degrees C to 90 degrees C. The volumetric concentration of nanoparticles in these fluids ranged from 0 to 10% for different nanofluids. The particle sizes considered were from 20 nm to 70 nm. The electrical conductivity measuring apparatus and the measurement procedure were validated by measuring the electrical conductivity of a calibration fluid, whose properties are known accurately. The measured electrical conductivity values agreed within +/- 1% with the published data reported by the manufacturer. Following the validation, the electrical conductivities of different nanofluids were measured. The measurements showed that electrical conductivity of nanofluids increased with an increase in temperature and also with an increase in particle volumetric concentration. For the same nanofluid at a fixed volumetric concentration, the electrical conductivity was found to be higher for smaller particle sizes. From the experimental data, empirical models were developed for three nanofluids to express the electrical conductivity as functions of temperature, volumetric concentration and the size of the nanoparticles.  相似文献   
2.
In this study the pH levels of aluminum oxide (Al2O3), silicon dioxide (SiO2), and zinc oxide (ZnO) nanoparticles dispersed in propylene glycol and water mixture were measured in the temperature range of 0°C to 90°C. The volumetric concentration of nanoparticles in these fluids ranged from 0 to 10% for different nanofluids. The average particle sizes (APS) considered were from 10 nm to 70 nm. The pH measuring apparatus and the measurement procedure were validated by measuring the pH of a calibration fluid, whose properties are known accurately. The measured pH values agreed within less than ±0.5% with the published data reported by the manufacturer. Following the validation, the pH values of different nanofluids were measured. The measurements showed that pH of nanofluids decreased with an increase in temperature and increased with an increase in particle volumetric concentration. For the same nanofluid at a fixed volumetric concentration, the pH was found to be higher for larger particle sizes. From the experimental data, empirical models were developed for three nanofluids to express the pH as functions of temperature, volumetric concentration, and the size of the nanoparticles.  相似文献   
3.
Wireless Personal Communications - In this research work, we propose a enhanced large scale multi-input multi-output (MIMO) approximate message passing (LAMA) based optimal data detector for large...  相似文献   
4.
Wireless Personal Communications - Spatial multiplexing increases the throughput by sending multiple data bits parallelly while generalized spatial modulation (GSM) increases the spectral...  相似文献   
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号