首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
工业技术   9篇
  2021年   2篇
  2020年   1篇
  2017年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  1997年   1篇
排序方式: 共有9条查询结果,搜索用时 140 毫秒
1
1.
Tissue engineering requires the precise positioning of mammalian cells and biomaterials on substrate surfaces or in preprocessed scaffolds. Although the development of 2D and 3D bioprinting technologies has made substantial progress in recent years, precise, cell-friendly, easy to use, and fast technologies for selecting and positioning mammalian cells with single cell precision are still in need. A new laser-based bioprinting approach is therefore presented, which allows the selection of individual cells from complex cell mixtures based on morphology or fluorescence and their transfer onto a 2D target substrate or a preprocessed 3D scaffold with single cell precision and high cell viability (93–99% cell survival, depending on cell type and substrate). In addition to precise cell positioning, this approach can also be used for the generation of 3D structures by transferring and depositing multiple hydrogel droplets. By further automating and combining this approach with other 3D printing technologies, such as two-photon stereolithography, it has a high potential of becoming a fast and versatile technology for the 2D and 3D bioprinting of mammalian cells with single cell resolution.  相似文献   
2.
In order to investigate cell-based tendon regeneration, a tendon rupture was simulated by utilizing a critical full-size model in female rat achilles tendons. For bridging the defect, polyglycol acid (PGA) and collagen type I scaffolds were used and fixed with a frame suture to ensure postoperatively a functional continuity. Scaffolds were seeded with mesenchymal stem cells (MSC) or tenocytes derived from male animals, while control groups were left without cells. After a healing period of 16 weeks, biomechanical, PCR, histologic, and electron microscopic analyses of the regenerates were performed. Genomic PCR for male-specific gene was used to detect transplanted cells in the regenerates. After 16 weeks, central ossification and tendon-like tissue in the superficial tendon layers were observed in all study groups. Biomechanical test showed that samples loaded with tenocytes had significantly better failure strength/cross-section ratio (P < 0.01) compared to MSC and the control groups whereas maximum failure strength was similar in all groups. Thus, we concluded that the application of tenocytes improves the outcome in this model concerning the grade of ossification and the mechanical properties in comparison to the use of MSC or just scaffold materials.  相似文献   
3.
Parasitic angiosperms, comprising a diverse group of flowering plants, are partially or fully dependent on their hosts to acquire water, mineral nutrients and organic compounds. Some have detrimental effects on agriculturally important crop plants. They are also intriguing model systems to study adaptive mechanisms required for the transition from an autotrophic to a heterotrophic metabolism. No less than any other plant, parasitic plants are affected by abiotic stress factors such as drought and changes in temperature, saline soils or contamination with metals or herbicides. These effects may be attributed to the direct influence of the stress, but also to diminished host availability and suitability. Although several studies on abiotic stress response of parasitic plants are available, still little is known about how abiotic factors affect host preferences, defense mechanisms of both hosts and parasites and the effects of combinations of abiotic and biotic stress experienced by the host plants. The latter effects are of specific interest as parasitic plants pose additional pressure on contemporary agriculture in times of climate change. This review summarizes the existing literature on abiotic stress response of parasitic plants, highlighting knowledge gaps and discussing perspectives for future research and potential agricultural applications.  相似文献   
4.
Landscape of next-generation sequencing technologies   总被引:1,自引:0,他引:1  
  相似文献   
5.
Poly(2-methyl-2-oxazoline)-polyethylenimine (PMeOx-co-PEI) copolymers differing by degree of polymerization (DP = 50 and 200) and PEI content (from 37 to 99 mol%) were synthesized by living cationic ring-opening polymerization of 2-methyl-2-oxazoline, followed by partial hydrolysis. Upon mixing with DNA in a wide range of N/P ratios, they formed well-defined polyplex particles of small size (typically below 100 nm) and narrow size distribution. The polyplexes demonstrated good colloidal stability and very low in vitro cytotoxicity. The copolymers exhibited buffering capacity of over 50% relative to that of the reference PEI implying effective endo-lysosomal escape of the polyplexes. Increased cellular internalization of both PCR fragments and plasmid DNA, attributable to the strongly positive ζ potential and small size of the polyplexes, was observed. In spite of these favorable prerequisites, the transfection efficiency was low (below 20% relative to the control PEI) and was attributed to retarded swelling of the polyplex particles, endo-lysosomal rupture, and DNA release.  相似文献   
6.
7.
Amorphous composite films, composed of a Ti1 − xVxO2 solid-solution phase and a V2O5 phase, were produced by chemical bath deposition and subsequently air-annealed at various temperatures up to 550 °C. The microstructure and chemical composition of the as-prepared and annealed films were investigated by a combinatorial experimental approach using Scanning electron microscopy, X-ray powder diffraction and X-ray photoelectron spectroscopy. Ultraviolet-Visible Spectrometry was applied to determine the optical band gap of the as-prepared and annealed films. It followed that the incorporation of vanadium in the as-deposited films reduces the optical band gap of TiO2 from about 3.8 eV to 3.2 eV. Annealing of the films up to 350 °C leads to slight increase of band gap, as attributed to a reduction of the defect density in the initially amorphous oxide films due to the gradual development of long-range order and a concurrent reduction of the V4+-dopant concentration in the Ti1 − xVxO2 solid-solution phase. The films crystallized upon annealing in air at 550 °C, which resulted in drastic changes of the phase constitution, optical absorbance and surface morphology. Due to the lower solubility of V4+ in crystalline TiO2, V4+ segregates out of the crystallizing Ti1 − xVxO2 solid-solution phase, forming crystalline V2O5 at the film surface.  相似文献   
8.
9.
Well defined ABA triblock copolymer comprising a biodegradable poly(ε-caprolactone) (PCL) middle block and two pH responsive poly(acrylic acid) (PAA) outer blocks was synthesized by atom transfer radical polymerization of tert-butyl acrylate, initiated by PCL-based macroinitiator, followed by selective hydrolysis of the poly(tert-butyl acrylate) blocks. The cooperative self-assembly of the synthesized poly(acrylic acid)-block-poly(ε-caprolactone)-block-poly(acrylic acid) (PAA22PCL26PAA22) copolymer with a temperature-responsive poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO26PPO40PEO26, Pluronic P85) triblock copolymer at different compositions in aqueous media was investigated. Based on experimental data, copolymer properties and composition, formation of nano-sized aggregates comprising a mixed PCL/PPO core and a mixed PEO/PAA corona is suggested. The binary mixture of PAA22PCL26PAA22:PEO26PPO40PEO26 copolymers at molar ratio 3:1 favors the formation of mixed aggregates only, while at higher PEO26PPO40PEO26 content the aggregates coexist with pure PEO26PPO40PEO26 micelles.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号