首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
工业技术   10篇
  2024年   1篇
  2022年   4篇
  2017年   3篇
  2015年   2篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
为了获得耐温抗盐性优良、在弱碱性环境中溶解性良好的疏水缔合聚合物驱油剂,以辛基酚聚氧乙烯醚(OP-10)为乳化剂,丙烯酰胺(AM)、丙烯酸(AA)和二十二烷基聚氧乙烯醚甲基丙烯酸酯(BEM)为原料合成了碱溶性三元共聚物P(AM/AA/BEM),对其合成条件进行了优化,并对其溶液性能进行了研究。结果表明,制备P(AM/AA/BEM)的最佳合成条件为:总单体质量分数20%、AA摩尔分数25%、BEM摩尔分数0.2%、引发剂偶氮二异丁基脒盐酸盐(V50)质量分数0.3%、反应温度45℃、反应时间8 h;P(AM/AA/BEM)增黏性较好,耐温达90℃,抗盐达20 g/L,剪切稀释性良好;P(AM/AA/BEM)与表面活性剂十二烷基苯磺酸钠(SDBS)具有较强的相互作用,在1 g/L P(AM/AA/BEM)中加入400 mg/L SDBS,可使聚合物/表面活性剂体系的黏度增大3.3倍。P(AM/AA/BEM)在增黏、耐温、抗盐和剪切稀释性方面均好于部分水解聚丙烯酰胺(HPAM)。  相似文献   
2.
首先用3-氨丙基三乙氧基硅烷偶联剂(APTES)在一定条件下接枝于纳米二氧化硅表面,并采用傅里叶变换红外光谱仪(FI-IR)进行测试表征,建立了一种用荧光胺定量检测功能化纳米SiO2表面氨基的方法,并通过优化实验建立该检测方法的测试标准.最佳检测条件为:室温下,激发波长380 nm、发射波长480 nm,荧光胺的丙酮溶液与磷酸盐缓冲液体积比1:5,磷酸盐缓冲液pH值为10.0,反应时间为10 min等条件下,荧光信号最稳定.采用该最佳条件下制定的标准曲线对功能化纳米SiO2微球进行检测,结果符合预期,该方法检测灵敏度高、操作简单.  相似文献   
3.
为了解决压裂用聚合物粉剂产品在连续混配施工时排量波动及泵吸困难的问题,选取3种现场用稠化剂(胍胶、LP-1和LP-2低分子聚合物)作为研究对象,研究了聚合物溶液幂律关系、黏弹性及维森伯格爬杆效应等流变性,揭示其内在作用机制,构建了满足抗高温(120 ℃)的清洁压裂液体系,并进行现场矿场应用。实验结果表明:从幂律关系及溶液黏弹性可知,LP-1为线性分子结构且相对分子质量较高,其弹性及稠度系数较大,溶液维森伯格爬杆效应明显,导致现场泵吸困难,混液不均匀,致使排量波动。基于低爬杆效应的微支化缔合型聚合物 LP-2,以“物理+化学”交联原理而构建满足工程应用的清洁压裂体系(配方为:0.3% LP-2+0.3% FA+0.25%GAF-5+0.3% FP-15+0.4% AP-5),该体系的基液黏度为 35.5 mPa·s,120 ℃、170 s-1剪切1 h的黏度为110.3 mPa·s,具有用量少、耐高温(120 ℃)、低伤害(残渣含量 35.2 mg/L、对岩心伤害率为 8.46%)、易返排(破胶液表面张力26.89 mN/m、与煤油间的界面张力为 1.15 m N/...  相似文献   
4.
为解决压裂用聚合类乳液稠化剂不耐高盐以及悬浮液稠化剂稳定性差的问题,以抗盐缔合聚合物KFPY为基础,通过考察悬浮液稠化剂的稳定时间、本体黏度,优选了体系的稳定剂,优化了粉末稠化剂粒径以及比例,最终形成悬浮液稠化剂GAF-TE组成为:48.5%白油+1.5%乳化剂G10+5%有机改性膨润土+45% 抗盐缔合稠化剂KFPY。在玛18井水水质下,对悬浮液稠化剂GAF-TE的溶解性能、增黏性能、减阻性能以及配制的滑溜水体系的各项性能进行了评价。结果表明,0.1%稠化剂 GAF-TE 溶解时间为 18 s,黏度为 2.19 mPa.s,降阻率为76.8%;配制的滑溜水体系动态携砂能力强于普通的聚丙烯酰胺乳液,体系表面张力26.8 mN/m,与煤油间的界面张力0.96 mN/m,对岩心基质渗透率伤害率为6.97%,具有低伤害特性。该缔合型悬浮液稠化剂产品在新疆油田某区块进行现场应用,表现出较好的溶解性、降阻性能和携砂性能。  相似文献   
5.
两种高分子通过次级相互作用形成高分子复合物,高分子复合物具有比单一组分聚合物更加优异的性能,这一特性使其在生物医药、渗透汽化和增稠等诸多领域得到应用。聚电解质复合物和氢键复合物是高分子复合物最主要的两种类型,此外,高分子复合物具有较多常见的表征方法,因此本文主要对高分子复合物的类型、表征方法和应用领域进行综述。  相似文献   
6.
玛湖风城组含有大量可溶性碱盐,特殊储层压后压降快、堵塞井筒严重影响试油。为了验证入井压裂液对 储层盐矿溶蚀是否会造成影响,基于风城组储层典型碱盐矿组成特点,模拟不同配液水对储层盐矿溶蚀影响,构 建了一套耐温(120 ℃)、抗高盐(30×104mg/L)免配聚合物交联压裂液体系,并进行现场试验。结果表明:高盐水 较自来水对典型模拟盐的抑溶率达到60%以上;以悬浮基疏水缔合聚合物溶液“链间缠结+缔合作用+盐效应”协 同作用实现增稠剂速溶、高效增黏,并与多元络合离子为核心的有机硼锆铝缓交联剂以化学交联原理形成了耐 温耐高盐的免配交联压裂液体系,最优配方为1.8%稠化剂GAF-TE+0.4%交联剂JL-3+0.3%增效剂GF15B + 0.04%破胶剂APS,在120 ℃、170 s-1下剪切1 h 后的黏度大于100 mPa·s,具有良好的悬砂和携砂能力。现场M 井压裂施工3 层,成功率为100%,压后顺利完成试油,最高日产油4.4 m3。采用高盐压裂液体系在抑制储层溶蚀 减缓地层压降快具有一定效果。  相似文献   
7.
为进一步提高渗吸采油压裂液焖井后的采收率,研究了破胶液中不同残渣含量及稠化剂相对分子质量对渗吸采收率的影响,通过渗吸剂优选及其对非交联缔合型稠化剂(CFZ)增黏、耐温耐剪切、渗吸采收率性能的影响研究,构建优化了一套残渣低、相对分子质量低的渗吸采油非交联缔合型清洁压裂液体系。研究表明:破胶液中残渣含量及相对分子质量越低,对渗吸采收率影响越小。配方为0.3%稠化剂CFZ+0.2%渗吸剂SZX-1+0.06%破胶剂APS的渗吸采油非交联缔合型清洁压裂液体系,在90℃、170 s-1下剪切90 min的黏度为77.43mPa·s,破胶液在油湿岩心表面接触角为31.6°,油水界面张力为0.66 mN/m,残渣含量为17.2 mg/L,相对分子质量为1.15×104,渗吸采收率为14.8%。该体系可为进一步提高压裂后的渗吸采收率提供理论依据及技术支持。  相似文献   
8.
为揭示疏水缔合聚合物(HMPAM)与非离子表面活性剂壬基酚聚氧乙烯醚(TX)间的相互作用规律,通过测量HMPAM/TX二元体系的表观黏度、荧光光谱和流变性研究了HMPAM与环氧乙烷(EO)数不同(4~15)的TX间的相互作用,分析了二者相互作用的变化规律。结果表明,HMPAM/TX二元体系宏观黏度的变化是由混合疏水微区微观结构与数量及体系中空间网络结构的变化引起的。HMPAM与TX系列表面活性剂相互作用的强弱为TX-4TX-7TX-10TX-13≈TX-15,按EO数的不同将其相互作用分为三种:(1)EO数为4~7,以TX-4、TX-7为代表,只表现出协同作用;(2)EO数为8~12,以TX-10为代表,既有协同作用又有"负作用";(3)EO数为13~15,以TX-13、TX-15为代表,只有"负作用"。  相似文献   
9.
冯茹森  蒲迪  周洋  陈俊华  寇将  姜雪  郭拥军 《化工进展》2015,34(8):2955-2960
为了探究混合型烷醇酰胺复杂组成对油/水界面张力的作用机制,采用GC-MS联用分析了混合型烷醇酰胺(GYD)的组成,并用自制的不同烷基链长醇酰胺(简记为CnDEA,n=8,10,12,14,16)在大庆原油条件下研究了GYD组成对油/水界面张力的影响规律。结果表明,降低油/水界面张力能力强弱为C14DEA> C12DEA≈GYD> C16DEA> C10DEA> C8DEA,C14DEA、C12DEA和GYD在一定浓度范围内能降低油/水界面张力至10-3mN/m数量级;CnDEA之间复配体系的界面活性取决于体系中各单分子结构烷醇酰胺相对含量,其中C14DEA/C12DEA相对含量是影响体系油/水界面活性的关键因素,当C14DEA/C12DEA复配比大于1时,体系达到超低界面张力浓度窗口更宽,界面动态特性更好;适量助剂(月桂酸和二乙醇胺)的加入对体系降低界面张力有一定的协同效应;GYD/C14DEA复配体系随C14DEA浓度增加,体系界面活性明显改善。  相似文献   
10.
罗腾  郭拥军  郑苗  蒲迪  邬国栋  李霞  胡俊  金诚 《油田化学》2022,39(4):636-650
为了探究吉木萨尔页岩油乳化严重的原因,首先将吉木萨尔油田稠油分离成胶质、沥青质、剩余分3 个组分,然后使用元素分析仪测定原油及其胶质的元素组成,采用高分辨傅立叶变换离子回旋共振质谱仪(FT-ICR MS)分别对原油及其胶质中化合物的分子组成进行鉴定。研究结果表明,吉木萨尔页岩油的胶质含量为 43.19%,沥青质含量为0.31%,剩余分含量为56.5%,其中,胶质中的N含量是原油的2.3 倍左右,胶质中O和S含量是原油的1.82 和1.29 倍,说明吉木萨尔原油的主要乳化活性成分来自胶质。在负离子(-ESI)模式下,原油和胶质中非碱性极性化合物的相对分子质量分布范围均为200~600 Da,质量中心在m/z=350 处;主要检测到了咔唑类(N1)、咔唑类氧化产物N1O1和N1O2及石油酸(O2)和酚类(O1)化合物,各组分含量大小顺序为:N1>N1O1>N1O2>O2>O1。由于N1类化合物含量较高导致了原油的乳化和缚水能力增加;此外N1的氧化产物N1O1和N1O2增加了原油的亲水性、极性和乳化性。O2和O1的存在进一步增强了原油的乳化能力。在正离子(+ESI)模式下,吉木萨尔原油及其胶质的碱性化合物相对分子质量范围在150~640 Da之间,原油的质量中心在m/z=350 处;胶质组分的质量中心在m/z=340 处;主要检测到N1和N2两种含氮化合物。其中N1类化合物占绝对优势,结构可能为八氢吖啶类、八氢菲啶类、喹啉类或异喹啉类化合物。该类物质在高温下微溶于水或亲水性增加,将导致原油在 高温下乳化性增强。因此,导致吉木萨尔页岩油乳化严重的主要表面活性物质为原油胶质中的含氮极性组分及其氧化物,此类化合物具有较高的界面活性,易在界面上吸附,促进界面张力降低,并且增强界面膜强度,导致乳状液稳定性增加,乳化性增强。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号