首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   5篇
  国内免费   9篇
工业技术   27篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2015年   2篇
  2014年   8篇
  2013年   1篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
排序方式: 共有27条查询结果,搜索用时 23 毫秒
1.
煤的孔隙结构是影响煤中气体吸附和渗流的一个重要因素。从实现精细化、无损化和定量化入手,应用μCT 225kVFCB型高精度CT试验分析系统,通过显微CT切片,提取研究了4个煤样孔隙分布特征,讨论了煤级、煤显微组分和灰分对煤孔隙结构的影响程度。采用公约数网格序列盒维数法定量表征了孔隙结构的复杂程度和不规则性,探讨了孔隙率、渗透率和分形维数的关系。研究表明,研究煤样的孔隙分布总体受煤显微组分含量控制,同时煤中矿物充填作用在一定程度上降低了煤的孔隙率、平均孔径和孔隙数量。煤孔隙分形维数D的变化与孔隙分布特征密切相关,有效地反映了孔隙结构的非均质性。孔隙率、渗透率与分形维数呈现显著的幂指数正相关关系。由此指示,基于显微CT切片的煤孔隙分形维数可作为煤储层孔隙特征和渗透性评价的定量指标之一。  相似文献   
2.
利用自主研制的煤样瓦斯吸附解吸装置,在恒温、相同初始压力条件下,对比研究了韩城矿区的块状原生结构煤和构造煤的瓦斯吸附规律,分析了其影响因素。试验结果显示:在平衡状态下,糜棱煤、碎裂煤和鳞片煤的单位质量瓦斯吸附量分别为原生结构煤的2.11、2.26、2.52倍。所有煤样的瓦斯吸附速率随时间的变化规律均呈单调递减的曲线形式,在吸附的初始阶段,构造煤的瓦斯吸附速率更快,尤其是在0~2 min时间段内这种差异最明显。构造煤在更短时间内达到吸附平衡,吸附效率更高。良好的致密性和原生裂隙不发育的特点决定了原生结构煤较强的瓦斯"封存"能力。良好的孔隙和后生裂隙的发育决定了构造煤在吸附性能方面要优于原生结构煤,而不同级别的孔隙发育比例和裂隙结构连通的差异性则是构造煤吸附性能差别的主因素。  相似文献   
3.
康志勤  赵阳升  杨栋  赵静  王磊 《石油学报》2021,42(11):1458-1468
油页岩是中国储量巨大的重要战略资源,也是国际公认的重要非常规石油资源。对油页岩进行地下原位干馏是目前实现其大规模工业开发的唯一可行技术方案。太原理工大学于2010年获得油页岩原位注蒸汽开采油气技术(MTI)的发明专利授权。基于MTI技术原理,对大尺寸油页岩试件实施原位注蒸汽开采油气的中试实验,并对多模式油页岩原位干馏技术的适用性进行分析。研究结果表明:①在实施油页岩原位多井水力压裂连通过程中,最高注水压力仅为地应力的41%,裂缝起裂扩展压力低。②蒸汽对流传热方式具备很高的传热效率,有机质热解迅速,蒸汽携带油气快速从生产井产出。同时,通过选择开启或关闭井组钻孔阀门的方式,实时调整蒸汽的流量和流向,灵活控制油页岩目标加热热解区域,实现了蒸汽的科学调配。③在油页岩原位注蒸汽正常运行过程中,蒸汽的注入压力仅约为自重应力的1/4,蒸汽锅炉长期低负载运行。④油页岩原位热解引发的地面沉降量很小,对地质环境危害小。⑤注汽热解区采出的含油率高达95%以上,总体原油采收率达到67.3%,充分证明利用MTI技术原位注蒸汽热解油页岩可达到较高的原油采收率。⑥所得油页岩油中轻质油品的占比达到72.51%;H2在热解气体中的比例占据绝对优势,体积含量高达68.87%。⑦注蒸汽热解区的顶、底板油页岩层热解不充分,裂隙发育不明显,成为良好的防渗隔热层。⑧MTI技术与其他油页岩原位热采技术相比,其在技术流程和经济性方面具有明显优势,具备广阔的商业开发应用前景。  相似文献   
4.
为了有效地分析不同煤体结构煤中孔隙结构的变化特征,从实现精细化、无损化和定量化入手,应用μCT225kVFCB型高精度CT试验分析系统,分析了4类煤样(原生结构煤、碎裂煤、鳞片煤和糜棱煤)大孔级孔隙分布特征。通过显微CT切片,结合扫描电子显微镜图像,直观观测了不同煤体结构煤的孔隙类型和显微构造,分析了构造变形对煤孔隙结构的影响规律。结果表明:不同煤体结构煤孔隙直径一般小于5μm,但后期构造应力改变了煤的孔隙结构。与原生结构煤相比,碎裂煤阶段遭受脆性破裂,形成大量外生孔和微裂隙,面孔隙率和平均孔径最大;糜棱煤阶段发生塑性流变,糜棱质发育,充填孔隙,面孔隙率和平均孔径最小。  相似文献   
5.
温度对褐煤渗透特性影响的试验研究   总被引:4,自引:2,他引:2  
采用太原理工大学采矿工艺研究所研制的煤(岩)MDS200三轴渗透试验机,在不同应力、不同温度条件下,对内蒙乌盟矿区褐煤进行热渗透试验研究。研究结果表明:随着煤层埋藏深度的增加,即体积应力的增加,褐煤渗透率总体上是呈下降趋势;在温度和体积应力不变的情况下,褐煤随着孔隙压力的增大,渗透率呈先下降,再增大的趋势,其临界点为2MPa左右;在体积应力和孔隙压力不变的情况下,随着温度的升高(100℃以内),褐煤的渗透率呈先下降,再急剧增大,再减小的趋势,渗透率的极低点温度为50℃左右,极高点温度80℃左右;当温度小于50℃时,随着孔隙压力的增大,渗透率呈下降趋势,当温度高于50℃时,随着孔隙压力的增大,渗透率呈上升趋势。  相似文献   
6.
详细介绍土木工程领域、环境工程领域、资源与能源开发工程领域中的多孔介质多场耦合作用的科学与技术问题,进而论述多孔介质多场耦合作用的科学内涵,其耦合作用理论包含固体应力场、渗流场、温度场和浓度场4个场的耦合作用,以及溶解的化学反应.介绍耦合作用的本构规律的研究重点与数学模型的组成,并深入讨论国内外关于固液、固气耦合作用下,孔隙与单一裂隙的渗流本构方程及其存在的问题.较详细介绍煤层气开采的裂隙介质固气耦合模型与应用、盐矿开采的固流热传质耦合模型与应用、高温岩体地热开采的固流热耦合模型及油页岩原位开采的相关技术与理论问题,讨论该类问题的数值模拟求解策略以及该类工程面临的深刻的理论与技术难题.  相似文献   
7.
为了探明高温蒸汽原位压裂油页岩的过程与机理,评价高温蒸汽沿着压裂裂缝热解矿层过程中温压时空演变规律,以大尺寸(米级)油页岩作为研究对象,采用实验室物理模拟的方法研究了在地应力约束下油页岩储层在高温蒸汽持续作用下表现的宏观压裂-渗流-传热特性.试验结果显示:高温蒸汽压裂需要克服地层应力和热应力叠加的约束作用,起裂压力值高,可达地应力的2倍;油页岩顶底板致密低渗,可以对压裂矿层起到较好的保温和隔热作用,热解区域完全靠蒸汽的流动规律控制;高温蒸汽沿着压裂裂缝热解矿层过程中,蒸汽压力(最大0.97 MPa)要远低于地层应力(3.82 MPa),当蒸汽沟通注热井和生产井时,二者的压力表现出协同一致的变化特征.在低地应力油页岩原位注热开采过程中,可以采用高温蒸汽压裂技术,压裂后矿层渗流通道良好,在矿层中注入较低压力的蒸汽便可实现大范围热解,通过注热井和生产井的轮换和调控,可以快速控制热解区域的走向.  相似文献   
8.
COMSOL Multiphysics软件是一款以有限元法为基础,可以通过求解偏微分方程组来实现多物理场耦合计算的数值仿真软件。通过COMSOL Multiphysics软件,结合多孔介质弹性力学、渗流力学、热力学理论建立多物理场耦合模型,并借助前人成果,模拟向煤层注入200 ℃的水,对煤层气进行热采,计算煤层的应力场、渗流场、温度场的耦合变化规律,以及煤层气的产出量。研究结果表明:向煤层注热水60 d后,煤层温度整体达到160 ℃以上,煤体的渗透率基本能提高到2.1×10-12 m2附近,结果证明利用对流热采新技术开发煤层气是完全可行的,开采效率极高,值得进行商业推广开发。  相似文献   
9.
油页岩热破裂规律分形理论研究   总被引:3,自引:2,他引:1  
 以不同温度下油页岩破裂显微CT图片作为分析对象,将分形的基本理论运用到油页岩的热破裂过程中。研究边长为7.0 mm正方体油页岩试件在200 ℃~600 ℃范围内热破裂裂隙分布的分形规律,得到不同温度下热裂隙分布的分形维数和分布初值。研究结果表明:不同温度下油页岩内部裂隙的分布具有很强的自相似性,符合分形规律,分形维数为1.0~1.5。建立分形维数、分布初值与温度的关系,从分形理论上研究油页岩的热破裂过程,宏观量化裂隙的分布状况和复杂程度。研究结论对分析油页岩热解过程中“微渗流通道”的发展演化过程具有重要的意义;同时,为从分形的角度探索其他岩石的热破裂过程提供一种新的方法和思路。  相似文献   
10.
为分析注入超临界CO2后,其对低渗透煤的作用,进行了超临界CO2抽提低渗透煤试验及超临界CO2抽提前后煤样的显微CT扫描试验。结果表明:该试验验证了超临界CO2对提高煤层低渗透性的可行性。由于超临界CO2的超强萃取作用,煤基质内少量的极性较低的碳氢化合物和类脂有机化合物被萃取,使煤体孔隙、裂隙增加。根据对超临界CO2试验前后煤样的显微CT扫描试验结果,直观地揭示了超临界CO2试验使低渗透煤内孔隙、裂隙发育程度增大,这充分证明超临界CO2有利于提高煤体渗透性,降低高瓦斯低渗透煤田的瓦斯灾害事故。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号