首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4763篇
  免费   228篇
  国内免费   3篇
工业技术   4994篇
  2023年   34篇
  2022年   20篇
  2021年   112篇
  2020年   76篇
  2019年   115篇
  2018年   144篇
  2017年   135篇
  2016年   159篇
  2015年   119篇
  2014年   178篇
  2013年   281篇
  2012年   240篇
  2011年   272篇
  2010年   212篇
  2009年   213篇
  2008年   239篇
  2007年   222篇
  2006年   197篇
  2005年   163篇
  2004年   159篇
  2003年   118篇
  2002年   140篇
  2001年   69篇
  2000年   65篇
  1999年   62篇
  1998年   160篇
  1997年   109篇
  1996年   93篇
  1995年   57篇
  1994年   60篇
  1993年   62篇
  1992年   43篇
  1991年   43篇
  1990年   40篇
  1989年   54篇
  1988年   28篇
  1987年   37篇
  1986年   45篇
  1985年   48篇
  1984年   42篇
  1983年   29篇
  1982年   24篇
  1981年   30篇
  1980年   33篇
  1979年   27篇
  1978年   23篇
  1977年   20篇
  1976年   43篇
  1974年   17篇
  1973年   15篇
排序方式: 共有4994条查询结果,搜索用时 15 毫秒
1.
The substantial increase in DNA sequencing efforts has led to a rapid expansion of available sequences in glycoside hydrolase families. The ever-increasing sequence space presents considerable opportunities for the search for enzymes with novel functionalities. In this work, the sequence-function space of glycoside hydrolase family 94 (GH94) was explored in detail, using a combined approach of phylogenetic analysis and sequence similarity networks. The identification and experimental screening of unknown clusters led to the discovery of an enzyme from the soil bacterium Paenibacillus polymyxa that acts as a 4-O-β-d -glucosyl-d -galactose phosphorylase (GGalP), a specificity that has not been reported to date. Detailed characterization of GGalP revealed that its kinetic parameters were consistent with those of other known phosphorylases. Furthermore, the enzyme could be used for production of the rare disaccharides 4-O-β-d -glucosyl-d -galactose and 4-O-β-d -glucosyl-l -arabinose. Our current work highlights the power of rational sequence space exploration in the search for novel enzyme specificities, as well as the potential of phosphorylases for rare disaccharide synthesis.  相似文献   
2.
This special issue of the journal on ‘constellations’ comes at a critical time in their development as a second wave of such non‐geostationary satellite orbit (NGSO) systems is being planned and deployed. These mega‐constellations as they have become known are, with a few exceptions, very much larger than those in the first wave and are focused on broadband and 5G applications rather than speech and narrow band data as those deployed in the first wave during the 1990s. However, as we explain in this editorial, there are many similarities in the design and business plans to the first wave and, perhaps, many similar lessons to be learned.  相似文献   
3.
4.
The use of hydrogen as a fuel is increasing exponentially, and the most economical way to store and transport hydrogen for fuel use is as a high-pressure gas. Polymers are widely used for hydrogen distribution and storage systems because they are chemically inert towards hydrogen. However, when exposed to high-pressure hydrogen, some hydrogen diffuses through polymers and occupies the preexisting cavities inside the material. Upon depressurization, the hydrogen trapped inside polymer cavities can cause blistering or cracking by expanding these cavities. A continuum mechanics–based deformation model was deployed to predict the stress distribution and damage propagation while the polymer undergoes depressurization after high-pressure hydrogen exposure. The effects of cavity size, cavity location, and pressure inside the cavity on damage initiation and evolution inside the polymer were studied. The stress and damage evolution in the presence of multiple cavities was also studied, because interaction among cavities alters the damage and stress field. It was found that all these factors significantly change the stress state in the polymer, resulting in different paths for damage propagation. The effect of adding carbon black filler particles and plasticizer on the damage was also studied. It was found that damage tolerance of the polymer increases drastically with the addition of carbon black fillers, but decreases with the addition of the plasticizer.  相似文献   
5.
Spontaneous mutations in the EEF1A2 gene cause epilepsy and severe neurological disabilities in children. The crystal structure of eEF1A2 protein purified from rabbit skeletal muscle reveals a post-translationally modified dimer that provides information about the sites of interaction with numerous binding partners, including itself, and maps these mutations onto the dimer and tetramer interfaces. The spatial locations of the side chain carboxylates of Glu301 and Glu374, to which phosphatidylethanolamine is uniquely attached via an amide bond, define the anchoring points of eEF1A2 to cellular membranes and interorganellar membrane contact sites. Additional bioinformatic and molecular modeling results provide novel structural insight into the demonstrated binding of eEF1A2 to SH3 domains, the common MAPK docking groove, filamentous actin, and phosphatidylinositol-4 kinase IIIβ. In this new light, the role of eEF1A2 as an ancient, multifaceted, and articulated G protein at the crossroads of autophagy, oncogenesis and viral replication appears very distant from the “canonical” one of delivering aminoacyl-tRNAs to the ribosome that has dominated the scene and much of the thinking for many decades.  相似文献   
6.
7.
正多伦多大学丹尼尔斯建筑、景观和设计学院的设计采用了分期的方法,包括修复和扩建以前称为"知识学院"的标志性建筑,将现有建筑物改造成与教学和需求更相关的框架体系。这个十九世纪遗址的总体规划是通过对预期用途模式和场地生态的分析而制定的,目的是重新定位校园西南角与安大略湖的轴线,并为学院创造新的特性。丹尼尔斯建筑、景观和设计学院需要一个可持续发展的新型工  相似文献   
8.
Agricultural robots rely on semantic segmentation for distinguishing between crops and weeds to perform selective treatments and increase yield and crop health while reducing the amount of chemicals used. Deep‐learning approaches have recently achieved both excellent classification performance and real‐time execution. However, these techniques also rely on a large amount of training data, requiring a substantial labeling effort, both of which are scarce in precision agriculture. Additional design efforts are required to achieve commercially viable performance levels under varying environmental conditions and crop growth stages. In this paper, we explore the role of knowledge transfer between deep‐learning‐based classifiers for different crop types, with the goal of reducing the retraining time and labeling efforts required for a new crop. We examine the classification performance on three datasets with different crop types and containing a variety of weeds and compare the performance and retraining efforts required when using data labeled at pixel level with partially labeled data obtained through a less time‐consuming procedure of annotating the segmentation output. We show that transfer learning between different crop types is possible and reduces training times for up to 80%. Furthermore, we show that even when the data used for retraining are imperfectly annotated, the classification performance is within 2% of that of networks trained with laboriously annotated pixel‐precision data.  相似文献   
9.
Sulfonylguanidines are interesting bioactive compounds with a broad range of applications in the treatment of different pathologies. 2-Aminobenzazole-based structures are well employed in the development of new anticancer drugs. Two series of novel N-benzazol-2-yl-N′-sulfonyl guanidine derivatives were synthesized with the sulfonylguanidine in either an extra- or intracyclic frame. They were evaluated for their antiproliferative activity against malignant melanoma tumor cells, thus allowing structure-activity relationships to be defined. Additionally, NCI-60 screening was performed for the best analogue to study its efficiency against a panel of other cancer cell lines. The stability profile of this promising compound was then validated. During the synthetic process, an unexpected new deamidination of the sulfonylguanidine towards sulfonamide function was also identified.  相似文献   
10.
Loss of β-cell mass and function can lead to insufficient insulin levels and ultimately to hyperglycemia and diabetes mellitus. The mainstream treatment approach involves regulation of insulin levels; however, approaches intended to increase β-cell mass are less developed. Promoting β-cell proliferation with low-molecular-weight inhibitors of dual-specificity tyrosine-regulated kinase 1A (DYRK1A) offers the potential to treat diabetes with oral therapies by restoring β-cell mass, insulin content and glycemic control. GNF4877, a potent dual inhibitor of DYRK1A and glycogen synthase kinase 3β (GSK3β) was previously reported to induce primary human β-cell proliferation in vitro and in vivo. Herein, we describe the lead optimization that lead to the identification of GNF4877 from an aminopyrazine hit identified in a phenotypic high-throughput screening campaign measuring β-cell proliferation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号