首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Satellites offer a promising alternative for mobile access to the Internet by both pedestrians, and more importantly, from vehicles. As such, satellites provide an essential complement to the cellular radio (UMTS) infrastructure in sparsely populated areas where high bandwidth UMTS cells cannot be economically deployed. In this paper, we analyse various mobile Internet applications in representative urban scenarios for two LEO constellations (one with polar orbits and the other with inclined orbits), as well as for some simple GEO configurations. To this end, we develop a satellite channel propagation model that includes shadowing from surrounding building skylines based on actual data in a built‐up area. Using these tools, we analyse various Internet applications and the performance of various TCP schemes in different topologies. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
Mega satellite constellations in low earth orbit (LEO) will provide complete global coverage; rapidly enhance overall capacity, even for unserved areas; and improve the quality of service (QoS) possible with lower signal propagation delays. Complemented by medium earth orbit (MEO) and geostationary earth orbit (GEO) satellites and terrestrial network components under a hybrid communications architecture, these constellations will enable universal 5G service across the world while supporting diverse 5G use cases. With an unobstructed line‐of‐sight visibility of approximately 3 min, a typical LEO satellite requires efficient user terminal (UT), satellite, gateway, and intersatellite link handovers. A comprehensive mobility design for mega‐constellations involves cost‐effective space and ground phased‐array antennas for responsive and seamless tracking. An end‐to‐end multilayer protocol architecture spanning space and terrestrial technologies can be used to analyze and ensure QoS and mobility. A scalable routing and traffic engineering design based on software‐defined networking adequately handles continuous variability in network topology, differentiated user demands, and traffic transport in both temporal and spatial dimensions. The space‐based networks involving mega‐constellations will be better integrated with their terrestrial counterparts by fully leveraging the multilayer 5G framework, which is the foundational feature of our hybrid architecture.  相似文献   

3.
This paper presents a simplified mathematical approach to evaluate the performance of any given circular constellation of 16‐level quadrature amplitude modulation (16‐QAM) in terms of symbol error rate (SER). Following this approach, with the aim to work with memoryless nonlinear satellite channels, a model is derived as a generalized form for both linear and nonlinear channels in the presence of down link additive white Gaussian noise (AWGN). The analysis provides means to calculate the optimal ring ratio (RR) and phase difference (PD) for several possible candidates of 16‐QAM circular constellations. The effects of RR and PD on the SER performance are investigated in the analysis. To overcome the nonlinear distortion, data pre‐distortion is taken into account in the study. The paper gives a general procedure for data pre‐distortion implementation for all circular 16‐QAM constellations. The analytical formulation has been extended for total degradation (TD) performance measure as a function of input back‐off (IBO) of the nonlinear amplifier. A SER performance‐comparison between different constellations for 16‐QAM systems has also been presented in this paper. The analytical results are validated by simulation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
A major problem for low Earth orbit (LEO) constellations with intersatellite links is the efficient routing of the data packets through such a highly dynamic network. In order to achieve a worldwide coverage even in remote areas and Internet access with a limited amount of gateway stations, intersatellite links are a promising approach. Since LEO constellations represent a distinct, highly dynamic routing environment, specific strategies are needed. To this end, a suitable geographical routing scheme is proposed and investigated in two Walker Star constellations. The proposed scheme targets reliable transmissions with low latency and high data rates. The approach is based on a geographical address identifier in Layer 2 of the communication stack. The globe is thus divided into geographical areas that determine this identifier in the MAC address of the terminals. As mobile terminals are considered, the MAC addressing scheme is flexible, whereas the IP addresses of the terminals remain static. This decoupling allows for flexibility in the choice of the address resolution scheme. Moreover, the geographical identifier in the MAC address enables fast routing table lookups and switching. The proposed routing scheme also takes possible overloads of the satellites due to traffic into account and applies a rerouting procedure. When a packet arrives in the geographical area of the destination terminal, a local rerouting scheme is applied if needed. The proposed approaches take handover events that possibly occur during a transmission into account. Furthermore, the scan angles of the satellites have been adapted to the constellations to provide full coverage and high elevation angles. So a robust and adaptable routing scheme is provided for a dynamic environment where satellites and terminals are constantly moving. The proposed definitions and procedures have been implemented in a system level simulator, which allows for comparisons with adjustable parameters in various scenarios. In this work, an Iridium‐like constellation and a megaconstellation are investigated and compared regarding the address resolution procedures, the average end‐to‐end transmission delay, and the dropping and rerouting rates. Additionally, the signaling overhead is compared with other approaches. The simulator and results of the simulations provide grounds for further research w.r.t. the routing in satellite constellations using intersatellite links.  相似文献   

5.
Orthogonal frequency division multiplexing (OFDM) has been adopted as a major data transmission technique by many wireless communication standards. In this research, 3 new triangular constellations schemes, which are named as TRI1, TRI2, and TRI3, are introduced to replace for the well‐known rectangular quadrature amplitude modulation (QAM) constellation in OFDM modulation. In this study, it has been shown that these new schemes have 3 major advantages with respect to the QAM. The first advantage is their lower bit error rate, which results from the better usage of the constellation space with longer minimum distances. The 2 other advantages are a lower peak to average ratio and higher noise immunity. Both mathematical analysis and simulation results demonstrate that by applying high fading channels with additive white Gaussian noise and intersymbol interference impairment simultaneously, the proposed constellations exhibit a superior performance in criteria compared to the commonly used rectangular 16QAM and 64QAM constellations. As a result, they are good choice for high speed and real‐time multicarrier applications such as digital video broadcasting terrestrial at no extra cost.  相似文献   

6.
This paper discusses networking issues associated with the provision of L/S-band personal satellite communications. Both the UMTS and IMT-2000 third generation mobile communication concepts have identified the need for a satellite component as part of their overall structure. The work is mostly based on the ESA-developed medium altitude global satellite system (MAGSS-14).1 It is, therefore, mainly relevant to MEO (medium earth orbit) constellations but most ideas can also be extended to LEO (low earth orbit) constellations. After examining user and service requirements the specific networking issues associated with personal satellite communications are reviewed. A network architecture is then proposed which takes these restrictions into account. Based on this network architecture, network signalling requirements, more specifically those relevant to network common control channels, are estimated.  相似文献   

7.
MPLS-based satellite constellation networks   总被引:1,自引:0,他引:1  
Nongeostationary satellite constellations with intersatellite links are a challenge for networking due to their continuously changing topology. In order to make maximal use of the network's capacities, special attention has to be paid to routing and traffic engineering. Multiprotocol label switching (MPLS) as underlying protocol is an interesting candidate for this task since it offers many possibilities to exert influence on traffic flows and supports today's dominating Internet protocol traffic very well. This paper describes a general MPLS-based networking concept for satellite networks and discusses different scenarios considering the particularities and constraints of the dynamic topology. Functional elements of MPLS like ingress, egress, or core routers have to be mapped onto the physical entities of the network and prerequisites for traffic engineering are discussed. Routing and rerouting of paths is of key interest since this affects route computation effort and routing performance. Thus, an analytical estimation of routing effort is deduced and numerical and simulation results are presented.  相似文献   

8.
This article describes a design concept for a new and powerful satellite/terrestrial network to provide global satellite access in space to the Internet. Myriad satellite networks have been announced that are expected to provide a vast repertoire of satellite-enabled telecommunications as well as global broadband access to the Internet. These constellations of satellites will compete for spectrum, as well as for orbital positions, and will introduce widespread RF interference among themselves as well as into the arena of terrestrial wireless communications. The gateway-in-space, defined and described in this article, offers a significant solution to these challenges by providing an in-space gateway access, with all its resources, for the many individual satellite networks  相似文献   

9.
The recent wave of creating an interconnected world through satellites has renewed interest in satellite communications. Private and government-funded space agencies are making advancements in the creation of satellite constellations, and the introduction of 5G has brought a new focus to a fully connected world. Satellites are the proposed solutions for establishing high throughput and low latency links to remote, hard-to-reach areas. This has caused the injection of many satellites in Earth's orbit, which has caused many discrepancies. There is a need to establish highly adaptive and flexible satellite systems to overcome this. Machine Learning (ML) and Deep Learning (DL) have gained much popularity when it comes to communication systems. This review extensively provides insight into ML and DL's utilization in satellite communications. This review covers how satellite communication subsystems and other satellite system applications can be implemented through Artificial Intelligence (AI) and the ongoing open challenges and future directions.  相似文献   

10.
近年来,在商业投资的推动下低轨卫星通信星座网络快速发展,不断有新的商业低轨卫星通信星座计划涌现。实际上20世纪90年代也曾掀起过低轨通信卫星星座浪潮,但结果却未能达到最初的设想。总结了20世纪90年代提出的低轨通信卫星计划的经验教训,概述了目前典型的新兴低轨商业卫星通信星座特性及发展现状,根据之前星座的经验教训提出了对当前商业低轨卫星通信星座发展的思考。  相似文献   

11.
A tremendous increase in the number of distributed satellite constellations with the unscheduled burst data traffic will impose addition and diverse requirements on the DRS (data relay satellite) systems, which increases the complexity for beam management and affects a real‐time data return and acquisition. In this paper, we suggested that a large capacity can be achieved by a multibeam DRS system based on multifrequency time division multiple access scheme providing multiaccess for the distributed satellite constellations. Because the space‐based information network is characterized by the limited on‐board resources, a highly dynamic topology and time‐varying intersatellite links, we designed a 2‐stage dynamic optimization approach to separate the multiobjective optimization for frequency/time blocks and power, aiming at the rapidly converging to the optimal solution and at the same time meeting the fairness resource allocation. In particular, a capacity‐fairness tradeoff algorithm is proposed based on hybrid the enhanced genetic algorithm and the particle swarm optimization. Simulation results show that the tradeoff between maximizing total capacity and providing proportional fairness allocation is well balanced. The proposed algorithm can rapidly converge to adapt to the highly dynamic topology in data relay satellite systems.  相似文献   

12.
Handover is one of the key subjects in maintaining the quality of service offered by non‐geostationary constellation systems. As the satellite coverage moves according to the satellite motion, the continuity of a call must be maintained from one satellite to another. In case the handover fails, the call is dropped, resulting in a quality of service degradation. This paper proposes several handover procedures that guarantee a successful handover in non‐geostationary satellite constellations requiring mutual visibility. Reservations at next satellite must be done in advance in order to avoid call drops. Several handover performance metrics (such as call blocking probability, call dropping probability and handover rate) are presented for each procedure as a function of traffic load variation. Comparisons of handover performance metrics between these procedures are presented as well. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Optical satellite networks   总被引:8,自引:0,他引:8  
Several nongeosynchronous satellite constellation networks providing broad-band access to end-users are currently under development. The use of multigigabit laser intersatellite links (ISLs) is the enabling factor for routing traffic through the spare segment and creating a global space-based optical backbone network. Optical networking techniques based on wavelength division multiplexing (WDM) ISLs and wavelength routing can allow by-pass of the transit traffic significantly simplifying routing decisions and minimizing processing delays. The paper examines the characteristics of these networks and investigates the applicability of various optical networking schemes based on single hop and multihop approaches. Single hop can be adopted in medium earth orbit (MEO) systems consisting of 10 to 15 satellites whereas double-hop schemes based on the matrix lightpath allocation approach are suited for constellations up to 100 satellites, covering the requirements of most of the proposed low earth orbit (LEO) systems. Multihop will be required for some of the very large in number of satellites constellations. Statistical multiplexing of the transported traffic over the ISLs appears to be a necessary condition to achieve an efficient utilization of the satellite resources. Traffic routing has to take into account the impact of the varying range of the interorbit ISLs on the propagation delays. Although maximum leverage of the technologies developed for fiber optic WDM networks should be made, the technologies to be employed on board the satellites have to be space-qualified that may limit the applicability of some otherwise high-efficiency components  相似文献   

14.
Several multisatellite and multispot systems have been recently proposed for provision of mobile and personal services with global coverage, adopting GEO or non-GEO (i.e., MEO, LEO) satellite constellations. The paper addresses an in-depth analysis of these constellations, evaluating both geometrical performance measures and cochannel interference levels caused by extensive frequency reuse. The geometrical analysis yields the statistics for coverage, frequency of satellite hand-overs, and link absence periods. The interference analysis is based on a general model valid for all access techniques, which is here applied to the case of FDMA. The outage probability as a function of the specification on carrier-to-interference power ratio is evaluated for four selected constellations. Several techniques are introduced for interference reduction in non-GEO systems, in which the satellites coverage areas may intersect: spot turnoff, intraorbital plane frequency division, and interorbital plane frequency division. The effects of Rice fading have also been analyzed by means of an analytic approximated method. The overall analysis allows a fair comparison between LEO, MEO, and GEO constellations  相似文献   

15.
In this paper, we introduce a variation of simulated annealing algorithm for optimizing two‐dimensional constellations with finite number of signals by maximizing the symmetric and pragmatic capacity. Our method also allows the joint optimization of constellation and binary labeling when the objective function is the pragmatic capacity. The algorithm can be applied with constraints on both the peak power and the average and peak power of the constellation. The proposed algorithm does not impose any a priori geometrical structure on the constellation and labeling. Here, we provide results only for the peak power constraints and constellations with up to 32 signals. For the symmetric capacity, optimal constellations depend on the signal to noise ratio and match in several cases the amplitude phase shift keying (APSK). On the other hand, for the pragmatic capacity several novel labeling constellation schemes are introduced, showing interesting differences between the two approaches. For modulation schemes with 32 signals, our optimized constellations perform up to 0.6 dB better than the optimized 4+12+16‐APSK used as the digital video broadcasting (DVB‐S2) standard. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
We address the problem of network pruning for extending the service life of satellites in LEO constellations. Satellites in LEO constellations can spend over 30 % of their time under the earth’s umbra, time during which they are powered by batteries. While the batteries are recharged by solar energy, the depth of discharge they reach during eclipse significantly affects their lifetime—and by extension, the service life of the satellites themselves. For batteries of the type that power Iridium satellites, a 15 % increase to the depth of discharge can practically cut their service lives in half. In this paper, we present the design and evaluation of two forms of network pruning schemes that reduce the energy consumption of LEO satellite network. First, we propose a new lightweight traffic-agnostic metric for quantifiying the quality of a frugal topology, the Adequacy Index (ADI). After showing that the problem of minimizing the power consumption of a LEO network subject to a given ADI threshold is NP-hard, we propose heuristcs to solve it. Second, we propose traffic-aware metric for quantifiying the quality of a frugal topology, the maximum link utilization (MLU). Also, with the problem being NP-hard subject to a given MLU threshold, we propose heuristics to solve it. We evaluate both forms using realistic LEO topologies and traffic matrices. Results show that traffic-agnostic pruning and traffic-aware pruning can increase the satellite service life by as much as 85 and 80 %, respectively. This is accomplished by trading off very little in terms of average path length and congestion.  相似文献   

17.
In this paper, a fixed‐gain amplify‐and‐forward relaying under non‐ideal hardware is analyzed. The relaying system is impaired because of relay's power amplifier (PA) nonlinearity and in‐phase and quadrature‐phase (IQ) imbalance at a destination. Closed‐form expressions for outage probability as well as ergodic capacity approximation and its upper bound are derived. Also, the outage probability and the ergodic capacity asymptotic expressions in the high signal‐to‐noise ratio are deduced. For the first time, the joint influence of PA nonlinearity and IQ imbalance on the system in terms of outage probability, symbol error rate, and ergodic capacity is investigated. The results are compared with the respect to soft envelope limiter and traveling‐wave tube amplifier at the relay. Based on the analytical and the numerical results, important insights into the impact of IQ imbalance and nonlinearity of the aforementioned PA models on the system performance are gained as well as valuable information on the performance of practically deployed fixed‐gain amplify‐and‐forward relaying system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
A deployed, self-cooled and modular (tile-based) active phased array for multibeam applications has recently been proposed in the literature. This novel antenna facilitates the implementation of large array antennas in space with many beams from the same aperture, offering a flexible payload with the potential for high traffic capacity. However, the configuration also raises some questions about degradation in antenna performance, due to constraints such as non-circular aperture, frame gap, uniform amplitude excitation, and a calibration boom deployed in front of the array. Methods dealing with these issues are discussed in this paper. It is shown that a phase-only optimization technique can effectively reduce interference between same-frequency spatially reused beams, and can compensate for EIRP and C/I degradation for tile-correlated errors and failures.  相似文献   

19.
The rise of the commercial space industry has resulted in the development of mega-constellations that promise to provide global broadband. These constellations capitalize on advancements in technology, improved modeling capabilities, and reductions in launch cost. One of the significant open questions is whether these constellations will significantly increase access for uncovered and underserved communities, in addition to serving existing markets. This paper analyzes which constellation characteristics provide the best global coverage at the lowest operational cost. First, we present the demand model that assesses the number of under-served and uncovered users in a given region. Then, we present a genetic algorithm used to identify potential constellations. Finally, we conclude by identifying which characteristics are the most promising for broadband constellations, as well as predictions of how the market will develop in the coming years. Our analysis has found that geostationary (GEO) and medium Earth orbit (MEO) satellite constellations have the highest likelihood of profitability. LEO networks are on average 27% more expensive, but if designed wisely, they can be competitive. Our work shows that there are diminishing returns with large constellations, and that it is more cost effective to have a small number of highly capable satellites, rather than many low complexity satellites. Key technologies like high frequency bands and miniaturization of components can lead to further cost reductions and increase the competitiveness of LEO constellations.  相似文献   

20.
Computing call-blocking probabilities in LEO satellite constellations   总被引:2,自引:0,他引:2  
We present an analytical model for computing call-blocking probabilities in a low Earth orbit (LEO) satellite network that carries voice calls. Both satellite-fixed and Earth-fixed constellations with interorbit links and handoffs are considered. We assume a single beam per satellite. Also, we assume that call arrivals are Poisson with a fixed arrival rate that is independent of the geographic area. The model is analyzed approximately by decomposing it into subsystems. Each subsystem is solved in isolation exactly using a Markov process and the individual results are combined together through an iterative method. Numerical results demonstrate that our method is accurate for a wide range of traffic patterns. We also derive an upper and lower bound for the link-blocking probabilities that can be computed efficiently. These bounds can be used for constellations of realistic size where each satellite has multiple beams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号