首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   2篇
工业技术   15篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2014年   1篇
  2012年   1篇
  2011年   2篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2002年   1篇
排序方式: 共有15条查询结果,搜索用时 312 毫秒
1.
2.
Membrane separation methods such as electrodialysis (ED) can reduce the volume load on evaporators by facilitating further concentration of rejects from reverse osmosis (RO) plants. ED studies were carried out on a bench-scale system using five membrane cell pairs to obtain a textile effluent concentrate containing approximately 6 times the quantity of salts present in the RO reject. The limiting current densities were determined to be in the range 2.15–3.35 amp/m2 for feed flow rates varying from 18 to 108 L/h. Apart from feed rate, the influence of volume of concentrate and current on membrane performance was evaluated to optimize current utilization. An estimation of energy requirement of an integrated process constituting ED and evaporation for concentration of inorganics present in textile effluent from 4.35% to 24% was made and found to be approximately one eighth of the operating cost incurred by evaporation alone. Detailed design of a commercial ED system revealed that a membrane area of 13.1 m2 was required to treat a feed rate of 1500 L/h. The payback period to recover capital investment was found to be 110 days.  相似文献   
3.
Gas exchange through the compacted final cover soil at landfill sites plays a vital role for emission, fate, and transport of toxic landfill gases. This study involved measuring the soil-gas diffusivity (Dp/Do, the ratio of gas diffusion coefficients in soil and free air) and air permeability (ka) for differently compacted soil samples (reddish-brown soil) from the final cover at the Maharagama landfill in Sri Lanka. The samples were prepared by either standard Proctor compaction or hand compaction to dry bulk densities of 1.60–1.94??g?cm-3. Existing and modified models for predicting Dp/Do and ka were tested against the measured data. The simple, single-parameter Buckingham model predicted measured Dp/Do values across compaction levels equally well or better than a dry bulk density (DBD) dependent model and a soil-water retention (SWR) dependent model. The measured ka values for differently compacted samples were highly affected by the compaction level and the sample moisture preparation method. Also, for air permeability, a single-parameter Buckingham-type ka model was most accurate in predicting ka in the differently compacted soil samples. Equivalent air-filled pore diameters (the effective diameter of the drained pores active in leading air through the sample) for gas flow, deq, were calculated from the measured Dp/D0 and ka values. The deq increased with compaction level, suggesting that a very high compaction level creates well-connected macropores in the reduced total pore space of the cover soil. This is an important consideration when designing cover soils for optimally low water and high oxygen exchange while minimizing climate and toxic gas emissions from the waste layer to the atmosphere.  相似文献   
4.
A novel analytical method based on laser desorption postionization mass spectrometry (LDPI-MS) was developed to investigate the competence and sporulation factor-a pentapeptide of amino acid sequence ERGMT-within intact Bacillus subtilis biofilms. Derivatization of the neat ERGMT peptide with quinoline- and anthracene-based tags was separately used to lower the peptide ionization potential and permit direct ionization by 7.87-eV vacuum ultraviolet radiation. The techniques of mass shifting and selective ionization of the derivatized peptide were combined here to permit detection of ERGMT peptide within intact biofilms by LDPI-MS, without any prior extraction or chromatographic separation. Finally, imaging MS specific to the derivatized peptide was demonstrated on an intact biofilm using LDPI-MS. The presence of ERGMT in the biofilms was verified by bulk extraction/LC-MS. However, MALDI imaging MS analyses were unable to detect ERGMT within intact biofilms.  相似文献   
5.
Landfill sites have been implicated in greenhouse warming scenarios as a significant source of atmospheric methane. In this study, the effects of extreme compaction on the two main soil-gas transport parameters, the gas diffusion coefficient (Dp) and the intrinsic air permeability (ka), and the cumulative methane oxidation rate in a landfill cover soil were investigated. Extremely compacted landfill cover soil exhibited negligible inactive soil-air contents for both Dp and ka. In addition, greater Dp and ka were observed as compared with normal compacted soils at the same soil-air content (ε), likely because of reduced water-blockage effects under extreme compaction. These phenomena are not included in existing predictive models for Dp(ε) and ka(ε). On the basis of the measured data, new predictive models for Dp(ε) and ka(ε) were developed with model parameters (representing air-filled pore connectivity and water-blockage effects) expressed as functions of dry density (ρb). The developed Dp(ε) and ka(ε) models together with soil-water retention data for soils at normal and extreme compaction (ρb = 1.44 and 1.85??g?cm-3) implied that extremely compacted soils will exhibit lower Dp and ka at natural field-water content (-100??cm H2O of soil-water matric potential) because of much lower soil-air content. Numerical simulations of methane gas transport, including a first-order methane oxidation rate, were performed for differently compacted soils by using the new predictive Dp(ε) model. Model results showed that compaction-induced difference in soil-air content at a given soil-water matric potential condition is likely the most important parameter governing methane oxidation rates in extremely compacted landfill cover soil.  相似文献   
6.
Experiments demonstrate that peptides with ionization potentials (IPs) above 7.87 eV can be single-photon-ionized in the gas phase with a molecular fluorine laser following prior chemical derivatization with one of several aromatic tags acting as chromophores. 4-(Dimethylamino)benzoic acid, 1-naphthylacetic acid, and 9-anthracenecarboxylic acid (denoted Benz, Naph and Anth, respectively) behave as chromophores, allowing single-photon ionization for vacuum ultraviolet (VUV) laser light by lowering the IP of the tagged peptide. Anth-tagged peptides that are laser-desorbed from a substrate and subsequently postionized produce mass spectra dominated by the intact radical cation, although protonated ions and fragmented species are also observed. Electronic structure calculations on Anth-tagged peptides indicate that in addition to lowering the ionization potential, the presence of the aromatic tag increases charge localization on and delocalization across the ring structure, which presumably stabilizes the radical cation. Measurements on several tagged peptides confirm this calculation and show that the stabilizing effect of the tag increases with the size of the conjugated system in the order Benz < Naph < Anth. The tagged hexapeptide Anth-GAPKSC exhibits the parent ion, whereas the Benz- and Naph-tagged peptides do not. These results are supported by the experimental comparison of Anth-tagged vs untagged tryptophan, further suggesting that VUV postionization of tagged high-IP species is a promising method for expanding the capabilities of mass spectrometric analyses of molecular species.  相似文献   
7.
Gadolinium is a competent neutron conversion material for neutron detection due to its extremely high neutron capture cross section. It differs from the other neutron reactive materials by emitting large amounts of low-energy electrons for the consequent signal generation in a detector. Such low-energy electrons, though abundant, are prone to be contaminated by internal and/or external gamma rays, such as the activated 43.0 keV K-X rays, given the high atomic number of gadolinium. While the 43.0 keV K-X ray ought to be rejected as it originates in part from the external gamma rays when neutron detection is concerned, the ability to separate this energy line from other signals points to a practical mode of gamma-ray detection by a thin-film semiconductor with gadolinium as a converter. In this paper, a gamma-ray discrimination scheme for neutron detection is studied, which also provides insight into gamma-ray detection with a small semiconductor device with gadolinium as a converter, in line with the same principle of isolating the K-X rays activated by high- or medium-energy gamma rays.  相似文献   
8.
The Aegle marmelos leaf extract (LE) mediated synthesis of prismatic and spherical Ag nanoparticles (NPs) has been studied. The formation of prismatic structures from spherical NPs was observed microscopically using scanning electron microscope, transmission electron microscope, and atomic force microscope. The shape transformation from spherical NPs to prismatic nanostructures was studied by simply changing LE concentration, keeping constant AgNO3 concentration (1 mM). The role of pH toward prism formation and the effect of sonication on the formed structures were also investigated. The antimicrobial activity of the synthesized Ag spherical/prismatic NPs was evaluated against gram negative bacteria (Escherichia coli, Pseudomonas aeruginosa) and on a phytopathogen Fusarium solani. This green synthesis approach for the synthesis of prismatic Ag nanostructures may be useful for surface‐enhanced Raman spectroscopy application for the detection of low concentration organic molecules, apart from the studied antimicrobial activity. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3670–3680, 2017  相似文献   
9.
Luminescent carbon‐based nanomaterials hold great promise due to their stable photo‐physical behaviour, biocompatibility and lower toxicity. This work involves economic and facile one‐pot green synthesis of water‐soluble nanostructures from lemon grass (LGNS) [Cymbopogon citratus (DC) Stapf] as carbon source. High‐resolution transmission electron microscopy confirmed the formation of LGNS with lattice spacing of 0.23 nm matching low‐dimensional graphitic structures. The strong absorption exhibited at 278 nm could be attributed to л‐states of sp2 /sp3 hybridisation in carbon nanostructures. Fluorescence spectroscopy of LGNS exhibited strong excitation‐dependent emission properties over a broad range of wavelengths from 300 to 600 nm. Quantitatively, these LGNS were estimated to have quantum yield of 23.3%. Biomass derived LGNS could be potentially exploited for wide variety of applications like bioimaging, up‐conversion, drug delivery and optoelectronic devices. To this extent, synthesised LGNS were used to image yeast cells via multicolour/multi‐excitation fluorescence imaging.Inspec keywords: fluorescence, carbon, nanofabrication, photoluminescence, toxicology, transmission electron microscopy, cellular biophysics, biomedical optical imaging, nanomedicine, biomedical materials, microorganisms, liquid phase depositionOther keywords: one‐pot hydrothermal synthesis, biocompatible fluorescent carbon dots, lemon grass herb, luminescent carbon‐based nanomaterials, stable photophysical behaviour, toxicity, water‐soluble nanostructures, carbon source, high‐resolution transmission electron microscopy, low‐dimensional graphitic structures, hybridisation, carbon nanostructures, fluorescence spectroscopy, excitation‐dependent emission properties, biomass derived LGNS, bioimaging, drug delivery, optoelectronic devices, yeast cell image, multicolour‐multiexcitation fluorescence imaging, C  相似文献   
10.
Organohalide metal perovskites have emerged as promising semiconductor materials for use as space solar cells and radiation detectors. However, there is a lack of study of their stability under operational conditions. Here a stability study of perovskite solar cells under gamma‐rays and visible light simultaneously is reported. The perovskite active layers are shown to retain 96.8% of their initial power conversion efficiency under continuous irradiation of gamma‐rays and light for 1535 h, where gamma‐rays have an accumulated dose of 2.3 Mrad. In striking contrast, a glass substrate shows obvious loss of transmittance under the same irradiation conditions. The excellent stability of the perovskite solar cells benefits from the self‐healing behavior to recover its efficiency loss from the early degradation induced by gamma‐ray irradiation. Defect density characterization reveals that gamma‐ray irradiation does not induce electronic trap states. These observations demonstrate the prospects of perovskite materials in applications of radiation detectors and space solar cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号