首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
工业技术   16篇
  2019年   2篇
  2017年   1篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2011年   3篇
  1999年   1篇
  1998年   2篇
  1995年   2篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
2.
This research evaluated the effect of drought on total and individual polyphenol contents as well as the antioxidant activities of cumin (Cuminum cyminum L.) seeds of 2 geographic origins, Tunisia (TCS) and India (ICS). Plants were treated with different levels of water deficit: control. Our results indicated that, in both varieties, moderate water deficit (MWD) improved the number of umbels per plant as well as the number of umbellets per umbel and the seed yield, in comparison to the control, but it decreased under severe water deficit (SWD). Besides, total phenolic contents were higher in the treated seeds and drought increased the level of total and individual polyphenols. This increase was appreciably more important in TCS than in ICS. Moreover, antioxidant activities of the extracts were determined by 4 different test systems, namely 2,2-diphenyl-1-picrylhydrazyl, β-carotene/linoleic acid chelating, and reducing power assays, and showed that treated seeds exhibited the highest activity, for both TCS and ICS.  相似文献   
3.
Polyphenol contents and 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) scavenging activity of cumin (Cuminum cyminum L.) seed extracts were compared depending on their geographical origin (Tunisia and India: TCS and ICS, respectively) and the extraction solvent polarity. The ??-carotene bleaching assay, the chelating ability and the reducing power of the most promising solvent extracts were also assessed. In addition, TCS and ICS extracts were acid-hydrolyzed and the phenolics identified by reversed-phase high-performance liquid chromatography (HPLC). Seed phenolic contents and antioxidant activity appeared to be accession and solvent dependent. Extraction with 80% acetone led to the highest polyphenol (18.60 and 16.50?mg gallic acid equivalents (GAE)/g dry weight (DW)), flavonoid (5.91 and 4.99?mg catechin equivalents (CE)/g DW) and tannin (83.23 and 80.23?mg CE/g DW) contents, respectively for TCS and ICS. DPPH scavenging activity, ??-carotene bleaching assay, chelating ability and reducing power were maximal in 80% acetone for both TCS and ICS. HPLC analysis revealed several phenolic compounds in C. cyminum seeds, with p-coumaric (4.83 and 2.33?mg/g DW), trans-2-dihydrocinnamic (1.09 and 1.20?mg/g DW) and rosmarinic (0.70 and 1.04?mg/g DW) acids as major phenolics in TCS and ICS, respectively. Thus, phenolic composition of cumin seeds is also origin dependent. Taken together, our findings indicate that cumin might constitute a rich and novel source of natural antioxidants as food additives in food industry and that acetone 80% would be the most appropriate solvent for seed extraction.  相似文献   
4.
BACKGROUND: The thermal stability of corn oil flavoured with thyme flowers was determined and compared with that of the original refined corn oil (control). The oxidative stability index (OSI) was measured and samples were exposed to heating (30 min at 150, 180 and 200 °C) and deep‐frying (180 °C). Changes in peroxide value (PV), free fatty acid (FFA) content, specific absorptivity values (K232 and K270), colour and chlorophyll, carotenoid and total phenol contents were monitored. RESULTS: The OSI and heating results showed that thyme incorporation was effective against thermal oxidation based on the increased induction time observed for the flavoured oil (6.48 vs 4.36 h), which was characterised by lower PV, FFA content, K232 and K270 than the control oil after heating from 25 to 200 °C, with higher red and yellow colour intensities and chlorophyll, carotenoid and total phenol contents. The deep‐frying test showed the accelerated deterioration of both oils in the presence of French fries. CONCLUSION: Compared with the control oil, the thyme‐flavoured oil showed improved thermal stability after heating. This could be attributed to the presence of thyme pigments and antioxidant compounds allowing extended oil thermal resistance. Copyright © 2011 Society of Chemical Industry  相似文献   
5.
The design of a medium access control scheme for a single-hop, wavelength-division-multiplexing-(WDM) multichannel local lightwave network poses two major difficulties: relatively large transmitter/receiver tuning overhead and large ratio of propagation delay to packet transmission time. Most schemes proposed so far have ignored the tuning overhead, and they can only schedule fixed-length packet transmissions. To overcome these two difficulties, the authors propose several scheduling algorithms which can reduce the negative impact of tuning overhead and schedule variable-length messages. A separate channel (control channel) is employed for transmission of control packets, and a distributed scheduling algorithm is invoked at each node every time it receives a control packet. By allowing the length of messages to be variable, a long message can be scheduled with a single control packet transmission, instead of fragmenting it into many fixed-length packets, thereby significantly reducing the overhead of control packet transmissions and improving the overall system performance. Three novel scheduling algorithms are proposed, varying in the amount of global information and processing time they need. Two approximate analytical models are formulated to study the effect of tuning time and the effect of having a limited number of data channels. Extensive simulations are conducted. Average message delays are compared for all of the algorithms  相似文献   
6.
Wavelength division multiplexing (WDM) provides the ability to utilize the enormous bandwidth offered by optical networks, using today's electronics. WDM-based optical networks employing passive-star couplers have been proposed for deployment in local and metropolitan areas. Optical amplification is often required in such networks to compensate for the signal attenuation along the fiber links and the splitting and coupling losses in the network. However, an optical amplifier has constraints on the maximum gain and the maximum output power it can supply; thus optical amplifier placement becomes a challenging problem. A simplifying assumption for analytical tractability requires that all wavelengths, present at a particular point in a fiber, be at the same power level, viz, the equally powered-wavelengths case. However, previous studies did not minimize the total number of amplifiers while achieving power equalization. In this paper, we formulate the minimization of amplifiers with power equalization as a mixed integer linear program (MILP) that can be solved by a linear program solver. Illustrative examples on sample networks are presented, which demonstrate the characteristics and the advantages of our optimal amplifier placement algorithm  相似文献   
7.
A wavelength-routed optical network can suffer inefficiencies due to the wavelength-continuity constraint (under which a signal has to remain on the same wavelength from the source to the destination). In order to eliminate or reduce the effects of this constraint, a device called a wavelength converter may be utilized. Due to the high cost of these wavelength converters, many studies have attempted to determine the exact benefits of wavelength conversion. However, most of these studies have focused on optical networks that implement full wavelength conversion capabilities. An alternative to full wavelength conversion is to employ only a sparse number of wavelength converters throughout the network, thereby reducing network costs. This study will focus on different versions of sparse wavelength conversion--namely, sparse nodal conversion, sparse switch-output conversion, and sparse (or limited) range conversion--to determine if most of the benefits of full conversion can be obtained using only sparse conversion. Simulation and analytical results on these three different classes of sparse wavelength conversion will be presented. In addition, this study will present heuristic techniques for the placement of sparse conversion facilities within an optical network.  相似文献   
8.
Optical networks based on passive-star couplers and employing WDM have been proposed for deployment in local and metropolitan areas. These networks suffer from splitting, coupling, and attenuation losses. Since there is an upper bound on transmitter power and a lower bound on receiver sensitivity, optical amplifiers are usually required to compensate for the power losses mentioned above. Due to the high cost of amplifiers, it is desirable to minimize their total number in the network. However, an optical amplifier has constraints on the maximum gain and the maximum output power it can supply; thus, optical amplifier placement becomes a challenging problem. In fact, the general problem of minimizing the total amplifier count is a mixed-integer nonlinear problem. Previous studies have attacked the amplifier-placement problem by adding the “artificial” constraint that all wavelengths, which are present at a particular point in a fiber, be at the same power level. This constraint simplifies the problem into a solvable mixed-integer linear program. Unfortunately, this artificial constraint can miss feasible solutions that have a lower amplifier count but do not have the equally powered wavelengths constraint. In this paper, we present a method to solve the minimum-amplifier-placement problem, while avoiding the equally powered wavelength constraint. We demonstrate that, by allowing signals to operate at different power levels, our method can reduce the number of amplifiers required  相似文献   
9.
Food Science and Biotechnology - This study was conducted to investigate potentially protective and curative effects of Curcuma longa root (turmeric) powder on CCl4-induced hepatotoxicity in rats....  相似文献   
10.
In the current study, we determined the effects of seven drying methods on total phenolics, flavonoids, individual phenolics, and antioxidant activity of the methanol extract of Salvia officinalis L. As compared with total phenolic content (TPC) of fresh plants, results showed that the highest TPC was recorded in plants dried by microwave (MW) at a power of 800 W/30 g of fresh plant and was 4.2 times higher than that of fresh plants whereas the lowest content was found in the case of plants dried by far-infrared (FIR) at 45 °C. The analysis of the different extracts by RP-HPLC showed a predominance of phenolic acids particularly in fresh plants and those dried by MW (600 W/30 g of fresh plant) whereas flavonoids predominate in the case of plants dried by FIR (65 °C). The assessment of the radical scavenging activity (RSA) against the stable radical 1,1-diphenyl-1-picrylhydrazyl (DPPH) showed an increase in the scavenging effect particularly in MW (800 W/30 g of fresh plant) dried plants with an IC50?=?13.49 μg ml?1 (IC50 is the concentration required to cause 50 % DPPH inhibition). The complementary assessment of the RSA using the β-carotene/linoleic acid system showed an increase of this activity for all extracts and particularly for the extract derived from MW (600 W/30 g of fresh plant) dried plants as compared to fresh ones. Finally, all the plant extracts showed moderate reducing power as assessed by the ferric-reducing antioxidant potential. These results suggested that MW drying could be applied to retain phenolic contents and to enhance antioxidant activity of sage plant materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号