首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   227篇
  免费   10篇
  国内免费   1篇
工业技术   238篇
  2023年   4篇
  2022年   6篇
  2021年   14篇
  2020年   5篇
  2019年   5篇
  2018年   10篇
  2017年   8篇
  2016年   13篇
  2015年   7篇
  2014年   10篇
  2013年   17篇
  2012年   12篇
  2011年   5篇
  2010年   12篇
  2009年   12篇
  2008年   7篇
  2007年   7篇
  2006年   7篇
  2005年   5篇
  2004年   2篇
  2003年   7篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   8篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1981年   2篇
  1979年   2篇
  1977年   3篇
  1976年   5篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有238条查询结果,搜索用时 296 毫秒
1.
Photocatalytic H2 generation using semiconductor photocatalysts is considered as a cost-effective and eco-friendly technology for solar to energy conversion; however, the present photocatalysts have been recognized to depict low efficiency. Currently, porous coordination polymers known as metal-organic frameworks (MOFs) constituting flexible and modifiable porous structure and having excess active sites are considered to be appropriate for photocatalytic H2 production. This review highlights current progress in structural development of MOF materials along with modification strategies for enhanced photoactivity. Initially, the review discusses the photocatalytic H2 production mechanism with the concepts of thermodynamics and mass transfer with particular focus on MOFs. Elaboration of the structural categories of MOFs into Type I, Type II, Type III and classification of MOFs for H2 generation into transition metal based, post-transition metal based, noble-metal based and hetero-metal based has been systematically discussed. The review also critically deliberate various modification approaches of band engineering, improvement of charge separation, efficient irradiation utilization and overall efficiency of MOFs including metal modification, heterojunction formation, Z-scheme formation, by introducing electron mediator, and dye based composites. Also, the MOF synthesized derivatives for photocatalytic H2 generation are elaborated. Finally, future perspectives of MOFs for H2 generation and approaches for efficiency improvement have been suggested.  相似文献   
2.
Iron pyrite films prepared by sulfur vapor transport   总被引:4,自引:0,他引:4  
Iron films deposited via thermal evaporation, with a thickness between 100 and 250 nm, were converted into FeS2 by open sulfur transport using nitrogen as a gas vector. The films thus obtained constituted a single pyrite phase and were optically highly absorbing. The sulfurization process was optimized. As a result, sample temperature and conversion time were found to be the major determining parameters. The films were characterized using several methods. The crystallinity and phase identification were determined by X-ray diffractometry. Scanning electron microscopy showed a homogeneous surface of both iron and pyrite layers. Optical transmission measurements confirmed the highly absorbing character of FeS2 and allowed the determination of direct (1.35 eV) and indirect (0.82 eV) transitions.  相似文献   
3.
4.
The solar cooking process has been investigated to develop safe, simple, portable, and reliable solar cookers. The concept of insulated and vapor-tight pots has been introduced and applied to oven, point-focus and heat-pipe cookers. A new, flat-plate cooker with heat pipes has been developed. It requires no tracking and allows cooking to be done in the shade or indoors. Also, a novel-portable cooker, the Mina Oven, featuring a vapor-tight pot and an integral collector with reflector flaps, has been constructed and tested. A second portable cooker that has been developed is the Arafa Cooker, which comprises a parabolic dish focused at a glazed and insulated receiver. Experiments indicated that all cookers yielded satisfactory performance, with cooking times of 25–45 min per kg of food per m2 of solar collection area while operating from 10 a.m. to 4 p.m.  相似文献   
5.
An original drying process combining air impingement and intermittent drying was studied on apple slices and mango cubes. The influence of four operating parameters (air velocity, drying/tempering periods, upper height, and air temperature) on the drying time and on the drying rate was evaluated. Continuous and intermittent drying were compared. The intermittency α = 1/7 (τon = 10 seconds and τoff = 60 seconds) gave the best results. A time savings of 54% for apple and 67% for mango was reached. In continuous drying, a time savings of 4620 seconds was observed by increasing the air velocity from 6 to 40 m s?1 for apple. Air temperatures of 328 K for apple and of 328 K or 338 K for mango were determined as optimum to prevent case‐hardening. Experimental results were fitted with the analytical solution of Fick's second law and the modified Page equation (average values R2 = 0.985 and 0.961, for apple and mango, respectively). For both products, the apparent moisture diffusivity Dapp, the drying constant k, the drying coefficient n, and the activation energy Ea, were identified. Activation energies calculated from the analytical solution were 30.3 and 36.8 kJ mol?1 and were 25.4 and 30.0 kJ mol?1 using the modified Page equation for apple and mango, respectively. Mango has an increased temperature sensitivity and thus will need less energy for drying than apple.  相似文献   
6.
7.
Wireless Networks - Inter-satellite data transmission links are very crucial for providing global inter-connectivity. We report designing and investigations on high date rate inter-satellite...  相似文献   
8.
Copper slag (CS) is a by-product of the copper extraction process, which can be used as coarse and/or fine aggregate in hot mix asphalt (HMA) pavements. This study used CS as a replacement of the fine aggregate with a percentage of up to 40% by total aggregate weight. The objective of this study was to evaluate the effect of CS on the rutting potential of the asphalt concrete mix using two methods. One method is based on the Dynamic modulus |E*| testing result. Actual pavement temperature data from a test section were used with the developed |E*| master curves. EverStressFE finite element program was used to perform a linear elastic load-deformation analysis for a pavement section and to determine the vertical resilient strain in a 40-mm HMA surface layer. The M-E PDG permanent deformation model was used with and Excel Visual Basic for Applications code to predict the accumulated rutting for different CS mixes for 10 million ESALs. The other method used the data from the flow number (FN) test. Based on the |E*| approach, the results indicated that adding 5% CS in the mix increased the predicted rutting from 0.59 to 0.98 mm at 10 million ESALs (increase by 68%). When 40% CS was used, rutting increased by more than 700% compared with the control mix. After analysing the FN results with the Francken model, the results indicated a decrease in FN as CS content is increased, indicating higher rutting potential. The decrease in FN ranged from 9% for 5% CS to 95% for 40% CS. The mixes containing up to 10% CS satisfied the minimum FN criteria for rutting. A calibration process for the M-E PDG distress prediction models that allows the use of waste and by-product materials such as CS should be considered in the future.  相似文献   
9.
10.
Demand for biodiesel has increased due to being a more environmentally-friendly fuel. Cold weather operation of biodiesel is challenging due to fatty acid methyl ester (FAME) content in biodiesel. Saturated FAMEs crystallize at relatively high temperatures, increase the viscosity of biodiesel, and can clog fuel lines. Here, several factors altered crystallization temperature (CT) of FAMEs, including composition, shear rate, and cooling rate. The crystallization of pure and binary mixtures of methyl palmitate, methyl myristate, and methyl stearate were studied under shear flow and static conditions. Static phase CTs of pure methyl palmitate, methyl myristate, and methyl stearate were 26, 14, and 35°C, respectively. In binary mixtures, CTs were depressed up to 7°C, which agreed with freezing point depression theory. Increasing shear rate up to 100 s−1 decreased CT by 2°C compared to static conditions. Decreasing cooling rate from 1 to 0.1°C/min increased CT less than 2°C. Overall, FAME composition altered CT more than shear flow or cooling rate for pure and binary mixtures of three FAMEs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号